Journal of Anesthesia

, Volume 31, Issue 6, pp 821–828 | Cite as

Effects of short-term exposure to sevoflurane on the survival, proliferation, apoptosis, and differentiation of neural precursor cells derived from human embryonic stem cells

  • Jin-Woo Park
  • Mi-sun Lim
  • So yeon JI
  • Myung Soo Cho
  • Seong-Joo Park
  • Sung-Hee Han
  • Jin-Hee KimEmail author
Original Article



Data from animal experiments suggest that exposure to general anesthetics in early life inhibits neurogenesis and causes long-term memory deficit. Considering short operating times and the popularity of sevoflurane in pediatric anesthesia, it is important to verify the effects of short-period exposure to sevoflurane on the developing brain.


We measured the effects of short-term exposure (2 h) to 3%, 6%, or 8% sevoflurane, the most commonly used anesthetic, on neural precursor cells derived from human embryonic stem cells, SNUhES32. Cell survival, proliferation, apoptosis, and differentiation on days 1, 3, 5, and 7 post treatment were analyzed.


Treatment with 6% sevoflurane increased cell viability (P = 0.046) and decreased apoptosis (P = 0.014) on day 5, but the effect did not persist on day 7. Survival and apoptosis were not affected by 3% and 8% sevoflurane; there was no effect of proliferation at any of the tested concentrations. The differentiation of cells exposed to 6% or 8% sevoflurane decreased on day 1 (P = 0.033 and P = 0.036 for 6% and 8% sevoflurane, respectively) but was again normalized on days 3–7.


Clinically relevant treatment with sevoflurane for 2 h induces no significant changes in the survival, proliferation, apoptosis, and differentiation of human neural precursor cells, although supraclinical doses of sevoflurane do alter human neurogenesis transiently.


Anesthetics general Human embryonic stem cells Neurogenesis Sevoflurane 



This work was supported by Grant 14-2014-010 from the Seoul National University Bundang Hospital Research Fund, Republic of Korea.

Compliance with ethical standards

Conflict of interest

No competing interests declared.


  1. 1.
    Loepke AW, Istaphanous GK, McAuliffe JJ 3rd, Miles L, Hughes EA, McCann JC, Harlow KE, Kurth CD, Williams MT, Vorhees CV, Danzer SC. The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning, and memory. Anesth Analg. 2009;108:90–104.CrossRefPubMedGoogle Scholar
  2. 2.
    Fang F, Xue Z, Cang J. Sevoflurane exposure in 7-day-old rats affects neurogenesis, neurodegeneration and neurocognitive function. Neurosci Bull. 2012;28:499–508.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fujimoto S, Ishikawa M, Nagano M, Sakamoto A. Influence of neonatal sevoflurane exposure on nerve development-related microRNAs and behavior of rats. Biomed Res. 2015;36:347–55.CrossRefPubMedGoogle Scholar
  4. 4.
    Zheng H, Dong Y, Xu Z, Crosby G, Culley DJ, Zhang Y, Xie Z. Sevoflurane anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice. Anesthesiology. 2013;118:516–26.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kodama M, Satoh Y, Otsubo Y, Araki Y, Yonamine R, Masui K, Kazama T. Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology. 2011;115:979–91.CrossRefPubMedGoogle Scholar
  6. 6.
    Wang SQ, Fang F, Xue ZG, Cang J, Zhang XG. Neonatal sevoflurane anesthesia induces long-term memory impairment and decreases hippocampal PSD-95 expression without neuronal loss. Eur Rev Med Pharmacol Sci. 2013;17:941–50.PubMedGoogle Scholar
  7. 7.
    Sun L. Early childhood general anaesthesia exposure and neurocognitive development. Br J Anaesth. 2010;105(suppl 1):i61–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    DiMaggio C, Sun LS, Kakavouli A, Byrne MW, Li G. A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol. 2009;21:286–91.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kalkman CJ, Peelen L, Moons KG, Veenhuizen M, Bruens M, Sinnema G, de Jong TP. Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology. 2009;110:805–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;110:796–804.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Brokhman I, Gamarnik-Ziegler L, Pomp O, Aharonowiz M, Reubinoff BE, Goldstein RS. Peripheral sensory neurons differentiate from neural precursors derived from human embryonic stem cells. Differ Res Biol Divers. 2008;76:145–55.CrossRefGoogle Scholar
  12. 12.
    Johnson MA, Weick JP, Pearce RA, Zhang SC. Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci. 2007;27:3069–77.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cho MS, Lee Y-E, Kim JY, Chung S, Cho YH, Kim D-S, Kang S-M, Lee H, Kim M-H, Kim J-H, Leem JW, Oh SK, Choi YM, Hwang D-Y, Chang JW, Kim D-W. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA. 2008;105:3392–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cho MS, Hwang DY, Kim DW. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat Protoc. 2008;3:1888–94.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou Z, Ma D. Anaesthetics-induced neurotoxicity in developing brain: an update on preclinical evidence. Brain Sci. 2014;4:136–49.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang C, Liu F, Patterson TA, Paule MG, Slikker W Jr. Utilization of neural stem cell-derived models to study anesthesia-related toxicity and preventative approaches. Mol Neurobiol. 2013;48:302–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Lerman J. Sevoflurane in pediatric anesthesia. Anesth Analg. 1995;81:S4–10.CrossRefPubMedGoogle Scholar
  18. 18.
    Fingar KR, Stocks C, Weiss AJ, Steiner CA. Most frequent operating room procedures performed in US hospitals, 2003–2012: statistical brief #186. In: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs, Rockville, MD; 2006.
  19. 19.
    Skalova S, Svadlakova T, Shaikh Qureshi WM, Dev K, Mokry J. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine. Int J Mol Sci. 2015;16:4043–67.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hatch DJ. New inhalation agents in paediatric anaesthesia. Br J Anaesth. 1999;83:42–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Lu CC, Tsai CS, Ho ST, Chen WY, Wong CS, Wang JJ, Hu OYP, Lin CY. Pharmacokinetics of sevoflurane uptake into the brain and body. Anaesthesia. 2003;58:951–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang Y, Dong Y, Zheng H, Shie V, Wang H, Busscher JJ, Yue Y, Xu Z, Xie Z. Sevoflurane inhibits neurogenesis and the Wnt-catenin signaling pathway in mouse neural progenitor cells. Curr Mol Med. 2013;13:1446–54.CrossRefPubMedGoogle Scholar
  23. 23.
    Nie H, Peng Z, Lao N, Dong H, Xiong L. Effects of sevoflurane on self-renewal capacity and differentiation of cultured neural stem cells. Neurochem Res. 2013;38:1758–67.CrossRefPubMedGoogle Scholar
  24. 24.
    Sinner B, Becke K, Engelhard K. General anaesthetics and the developing brain: an overview. Anaesthesia. 2014;69:1009–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang X, Liu S, Newport GD, Paule MG, Callicott R, Thompson J, Liu F, Patterson TA, Berridge MS, Apana SM, Brown CC, Maisha MP, Hanig JP, Slikker W Jr, Wang C. In vivo monitoring of sevoflurane-induced adverse effects in neonatal nonhuman primates using small-animal positron emission tomography. Anesthesiology. 2016;125:133–46.CrossRefPubMedGoogle Scholar
  26. 26.
    Xiao H, Liu B, Chen Y, Zhang J. Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane. Int J Dev Neurosci. 2016;48:38–49.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang S, Peretich K, Zhao Y, Liang G, Meng Q, Wei H. Anesthesia-induced neurodegeneration in fetal rat brains. Pediatr Res. 2009;66:435–40.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sun X, Fang B, Zhao X, Zhang G, Ma H. Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS One. 2014;9:e90667.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lucchinetti E, Zeisberger SM, Baruscotti I, Wacker J, Feng J, Zaugg K, Dubey R, Zisch AH, Zaugg M. Stem cell-like human endothelial progenitors show enhanced colony-forming capacity after brief sevoflurane exposure: preconditioning of angiogenic cells by volatile anesthetics. Anesth Analg. 2009;109:1117–26.CrossRefPubMedGoogle Scholar
  30. 30.
    Wei H, Liang G, Yang H. Isoflurane preconditioning inhibited isoflurane-induced neurotoxicity. Neurosci Lett. 2007;425:59–62.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhao P, Zuo Z. Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. Anesthesiology. 2004;101:695–703.CrossRefPubMedGoogle Scholar
  32. 32.
    Jevtovic-Todorovic V, Boscolo A, Sanchez V, Lunardi N. Anesthesia-induced developmental neurodegeneration: the role of neuronal organelles. Front Neurol. 2012;3:141.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg. 2008;106:1681–707.CrossRefPubMedGoogle Scholar
  34. 34.
    Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(suppl 3):511–33.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sohn HM, Kim HY, Park S, Han SH, Kim JH. Isoflurane decreases proliferation and differentiation, but none of the effects persist in human embryonic stem cell-derived neural progenitor cells. J Anesth. 2017;31:36–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Yi X, Cai Y, Zhang N, Wang Q, Li W. Sevoflurane inhibits embryonic stem cell self-renewal and subsequent neural differentiation by modulating the let-7a-Lin28 signaling pathway. Cell Tissue Res. 2016;365:319–30. doi: 10.1007/s00441-016-2394-x. CrossRefPubMedGoogle Scholar
  37. 37.
    Davidson AJ, Disma N, de Graaff JC, Withington DE, Dorris L, Bell G, Stargatt R, Bellinger DC, Schuster T, Arnup SJ, Hardy P, Hunt RW, Takagi MJ, Giribaldi G, Hartmann PL, Salvo I, Morton NS, von Ungern Sternberg BS, Locatelli BG, Wilton N, Lynn A, Thomas JJ, Polaner D, Bagshaw O, Szmuk P, Absalom AR, Frawley G, Berde C, Ormond GD, Marmor J, McCann ME, Consortium GAS. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet. 2016;387:239–50.CrossRefPubMedGoogle Scholar
  38. 38.
    Pound P, Bracken MB. Is animal research sufficiently evidence based to be a cornerstone of biomedical research? BMJ. 2014;348:g3387.CrossRefPubMedGoogle Scholar
  39. 39.
    Hansen TG. Anesthesia-related neurotoxicity and the developing animal brain is not a significant problem in children. Paediatr Anaesth. 2015;25:65–72.CrossRefPubMedGoogle Scholar
  40. 40.
    LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron. 1995;15:1287–98.CrossRefPubMedGoogle Scholar
  41. 41.
    Ryu JR, Hong CJ, Kim JY, Kim EK, Sun W, Yu SW. Control of adult neurogenesis by programmed cell death in the mammalian brain. Mol Brain. 2016;9:43.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yufune S, Satoh Y, Akai R, Yoshinaga Y, Kobayashi Y, Endo S, Kazama T. Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain. Sci Rep. 2016;6:21859.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhou L, Wang Z, Zhou H, Liu T, Lu F, Wang S, Li J, Peng S, Zuo Z. Neonatal exposure to sevoflurane may not cause learning and memory deficits and behavioral abnormality in the childhood of Cynomolgus monkeys. Sci Rep. 2015;5:11145.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2017

Authors and Affiliations

  1. 1.Department of Anesthesiology and Pain MedicineSeoul National University Bundang HospitalSeongnamRepublic of Korea
  2. 2.Research and Development Center, Jeil Pharmaceutical Co., LtdYonginRepublic of Korea

Personalised recommendations