Journal of Anesthesia

, Volume 31, Issue 5, pp 692–702 | Cite as

The response to Trendelenburg position is minimally affected by underlying hemodynamic conditions in patients with aortic stenosis

  • Abraham Sonny
  • Daniel I. Sessler
  • Jing You
  • Babak Kateby Kashy
  • Sheryar Sarwar
  • Akhil K. Singh
  • Shiva Sale
  • Andrej Alfirevic
  • Andra E. Duncan
Original Article



Trendelenburg positioning is commonly used to temporarily treat intraoperative hypotension. The Trendelenburg position improves cardiac output in normovolemic or anesthetized patients, but not hypovolemic or non-anesthetized patients. Therefore, the response to Trendelenburg positioning may vary depending on patient population or hemodynamic conditions. We thus tested the hypothesis that the effectiveness of the Trendelenburg position, as indicated by an increase in cardiac output, improves after replacement of a stenotic aortic valve. Secondarily, we evaluated whether measurements of left ventricular preload, systolic function, or afterload were associated with the response to Trendelenburg positioning.


This study is a secondary analysis of a clinical trial which included patients having aortic valve replacement (AVR) who were monitored with pulmonary artery catheters (NCT01187329). We examined changes in thermodilution cardiac output with Trendelenburg positioning before and after AVR. We also examined whether echocardiographic and hemodynamic measurements of preload, afterload, and systolic function were associated with changes in cardiac output during Trendelenburg positioning.


Thirty-seven patients were included. The median [IQR] cardiac output change with Trendelenburg positioning was −3% [−10%, 5%] before AVR versus +4% [−4%, 15%] after AVR. Estimated median difference in cardiac output with Trendelenburg was 5% (95% CI 1, 15%, P = 0.04) greater after AVR. The response to Trendelenburg positioning was largely independent of hemodynamic conditions.


The response to Trendelenburg positioning improved following AVR, but by a clinically unimportant amount. The response to Trendelenburg positioning was independent of hemodynamic conditions.


Anesthesia Trendelenburg position Cardiac surgery Aortic valve replacement Aortic stenosis 

Supplementary material

540_2017_2384_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)


  1. 1.
    Pricolo VE, Burchard KW, Singh AK, Moran JM, Gann DS. Trendelenburg versus PASG application−hemodynamic response in man. J Trauma. 1986;26:718–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Gentili DR, Benjamin E, Berger SR, Iberti TJ. Cardiopulmonary effects of the head-down tilt position in elderly postoperative patients: a prospective study. South Med J. 1988;81:1258–60.CrossRefPubMedGoogle Scholar
  3. 3.
    Reich DL, Konstadt SN, Raissi S, Hubbard M, Thys DM. Trendelenburg position and passive leg raising do not significantly improve cardiopulmonary performance in the anesthetized patient with coronary artery disease. Crit Care Med. 1989;17:313–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Terai C, Anada H, Matsushima S, Shimizu S, Okada Y. Effects of mild Trendelenburg on central hemodynamics and internal jugular vein velocity, cross-sectional area, and flow. Am J Emerg Med. 1995;13:255–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Terai C, Anada H, Matsushima S, Kawakami M, Okada Y. Effects of Trendelenburg versus passive leg raising: autotransfusion in humans. Intensive Care Med. 1996;22:613–4.CrossRefPubMedGoogle Scholar
  6. 6.
    Mekis D, Kamenik M. Influence of body position on hemodynamics in patients with ischemic heart disease undergoing cardiac surgery. Wien Klin Wochenschr. 2010;122(Suppl 2):59–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Zorko N, Mekis D, Kamenik M. The influence of the Trendelenburg position on haemodynamics: comparison of anaesthetized patients with ischaemic heart disease and healthy volunteers. J Int Med Res. 2011;39:1084–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Sibbald WJ, Paterson NA, Holliday RL, Baskerville J. The Trendelenburg position: hemodynamic effects in hypotensive and normotensive patients. Crit Care Med. 1979;7:218–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Jennings T, Seaworth J, Howell L, Tripp L, Goodyear C. Effect of body inversion on hemodynamics determined by two-dimensional echocardiography. Crit Care Med. 1985;13:760–2.CrossRefPubMedGoogle Scholar
  10. 10.
    Ostrow CL, Hupp E, Topjian D. The effect of Trendelenburg and modified trendelenburg positions on cardiac output, blood pressure, and oxygenation: a preliminary study. Am J Crit Care. 1994;3:382–6.PubMedGoogle Scholar
  11. 11.
    Sing RF, O’Hara D, Sawyer MA, Marino PL. Trendelenburg position and oxygen transport in hypovolemic adults. Ann Emerg Med. 1994;23:564–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Reuter DA, Felbinger TW, Schmidt C, Moerstedt K, Kilger E, Lamm P, Goetz AE. Trendelenburg positioning after cardiac surgery: effects on intrathoracic blood volume index and cardiac performance. Eur J Anaesthesiol. 2003;20:17–20.CrossRefPubMedGoogle Scholar
  13. 13.
    van Lieshout JJ, Harms MP, Pott F, Jenstrup M, Secher NH. Stroke volume of the heart and thoracic fluid content during head-up and head-down tilt in humans. Acta Anaesthesiol Scand. 2005;49:1287–92.CrossRefPubMedGoogle Scholar
  14. 14.
    Rex S, Brose S, Metzelder S, Huneke R, Schalte G, Autschbach R, Rossaint R, Buhre W. Prediction of fluid responsiveness in patients during cardiac surgery. Br J Anaesth. 2004;93:782–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Duncan AE, Kateby Kashy B, Sarwar S, Singh A, Stenina-Adognravi O, Christoffersen S, Alfirevic A, Sale S, Yang D, Thomas JD, Gillinov M, Sessler DI. Hyperinsulinemic normoglycemia does not meaningfully improve myocardial performance during cardiac surgery: a randomized trial. Anesthesiology. 2015;123:272–87.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Altschule MD. Invalidity of using so-called Starling curves in clinical medicine. Perspect Biol Med. 1983;26:171–87.CrossRefPubMedGoogle Scholar
  17. 17.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing Group, American Society of Echocardiography’s Guidelines and Standards Committee, European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Duncan AE, Alfirevic A, Sessler DI, Popovic ZB, Thomas JD. Perioperative assessment of myocardial deformation. Anesth Analg. 2014;118:525–44.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Weidemann F, Jamal F, Sutherland GR, Claus P, Kowalski M, Hatle L, De Scheerder I, Bijnens B, Rademakers FE. Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol. 2002;283:H792–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Krayenbuehl HP, Hess OM, Ritter M, Monrad ES, Hoppeler H. Left ventricular systolic function in aortic stenosis. Eur Heart J. 1988;9 Suppl E:19–23.CrossRefPubMedGoogle Scholar
  21. 21.
    Ross J Jr. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 1976;18:255–64.CrossRefPubMedGoogle Scholar
  22. 22.
    Geerts BF, van den Bergh L, Stijnen T, Aarts LP, Jansen JR. Comprehensive review: is it better to use the Trendelenburg position or passive leg raising for the initial treatment of hypovolemia? J Clin Anesth. 2012;24:668–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Duncan AE, Sarwar S, Kateby Kashy B, Sonny A, Sale S, Alfirevic A, Yang D, Thomas JD, Gillinov M, Sessler DI. Early left and right ventricular response to aortic valve replacement. Anesth Analg. 2017;124:406–18.CrossRefPubMedGoogle Scholar
  24. 24.
    Yang XX, Critchley LA, Joynt GM. Determination of the precision error of the pulmonary artery thermodilution catheter using an in vitro continuous flow test rig. Anesth Analg. 2011;112:70–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Stetz CW, Miller RG, Kelly GE, Raffin TA. Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis. 1982;126:1001–4.PubMedGoogle Scholar
  26. 26.
    Reichek N, Wilson J, St John Sutton M, Plappert TA, Goldberg S, Hirshfeld JW. Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation. 1982;65:99–108.CrossRefPubMedGoogle Scholar
  27. 27.
    DePace NL, Ren JF, Iskandrian AS, Kotler MN, Hakki AH, Segal BL. Correlation of echocardiographic wall stress and left ventricular pressure and function in aortic stenosis. Circulation. 1983;67:854–9.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2017

Authors and Affiliations

  1. 1.Division of Cardiothoracic AnesthesiologyCleveland ClinicClevelandUSA
  2. 2.Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General HospitalBostonUSA
  3. 3.Department of Outcomes ResearchCleveland ClinicClevelandUSA
  4. 4.Senior Care PhysiciansTaylorUSA
  5. 5.Department of Family MedicineSt. Vincent Medical GroupKokomaUSA
  6. 6.Department of Anaesthesiology, Pain Medicine & Critical CareAll India Institute of Medical SciencesNew DelhiIndia
  7. 7.Division of Cardiothoracic AnesthesiaCleveland ClinicClevelandUSA

Personalised recommendations