Skip to main content

Advertisement

Log in

µ-Opioid receptor activation by tramadol and O-desmethyltramadol (M1)

  • Short Communication
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Tramadol has been used as an analgesic for several decades. µ-Opioid receptors (µORs) are the major receptors that mediate the analgesic effects of opioids. Although µORs have been thought to be one of the sites of action of tramadol, there has been no report that directly proves whether tramadol is an agonist of μOR or not. In this study, we examined the effects of tramadol and its main active metabolite O-desmethyltramadol (M1), on the function of µORs using Xenopus oocytes expressing cloned human µORs. The effects of tramadol and M1 were evaluated using the Ca2+-activated Cl current assay method for Gi/o-protein-coupled receptors by using a µOR fused to Gqi5 (µOR-Gqi5) in Xenopus oocytes. DAMGO [(d-Ala2, N-MePhe4, Gly5-ol)-enkephalin] evoked Cl currents in oocytes expressing µOR-Gqi5 in a concentration-dependent manner. Tramadol and M1 also evoked Cl currents in the oocytes expressing µOR-Gqi5; however, relatively higher concentrations (compared to DMAGO) were necessary to induce such currents. Tramadol and M1 had a direct effect on µORs expressed in Xenopus oocytes. Although the monoamine uptake system and several types of ligand-gated ion channels are thought to be one of the targets for tramadol, tramadol-induced antinociception may be mediated at least in part, by the direct activation of µORs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Minami K, Uezono Y, Ueta Y. Pharmacological aspects of the effects of tramadol on G-protein coupled receptors. J Pharmacol Sci. 2007;103:253–60.

    Article  CAS  PubMed  Google Scholar 

  2. Driessen B, Reimann W. Interaction of the central analgesic, tramadol, with the uptake and release of 5-hydroxytryptamine in the rat brain in vitro. Br J Pharmacol. 1992;105:147–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Driessen B, Reimann W, Giertz H. Effects of the central analgesic tramadol on the uptake and release of noradrenaline and dopamine in vitro. Br J Pharmacol. 1993;108:806–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Halfpenny DM, Callado LF, Hopwood SE, Bamigbade TA, Langford RM, Stamford JA. Effects of tramadol stereoisomers on norepinephrine efflux and uptake in the rat locus coeruleus measured by real time voltammetry. Br J Anaesth. 1999;83:909–15.

    Article  CAS  PubMed  Google Scholar 

  5. Sagata K, Minami K, Yanagihara N, Shiraishi M, Toyohira Y, Ueno S, Shigematsu A. Tramadol inhibits norepinephrine transporter function at desipramine-binding sites in cultured bovine adrenal medullary cells. Anesth Analg. 2002;94:901–6.

    Article  CAS  PubMed  Google Scholar 

  6. Surratt CK, Adams WR. G protein-coupled receptor structural motifs: relevance to the opioid receptors. Curr Top Med Chem. 2005;5:315–24.

    Article  CAS  PubMed  Google Scholar 

  7. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL. Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp Ther. 1992;260:275–85.

    CAS  PubMed  Google Scholar 

  8. Caulfield MP, Birdsall NJ. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev. 1998;50:279–90.

    CAS  PubMed  Google Scholar 

  9. Dascal N. The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem. 1987;22:317–87.

    Article  CAS  PubMed  Google Scholar 

  10. Minami K, Sudo Y, Yokoyama T, Ogata J, Takeuchi M, Uezono Y. Sevoflurane inhibits the micro-opioid receptor function expressed in Xenopus oocytes. Pharmacology. 2011;88:127–32.

    Article  CAS  PubMed  Google Scholar 

  11. Vorobiov D, Bera AK, Keren-Raifman T, Barzilai R, Dascal N. Coupling of the muscarinic m2 receptor to G protein-activated K(+) channels via Galpha(z) and a receptor-Galpha(z) fusion protein. Fusion between the receptor and Galpha(z) eliminates catalytic (collision) coupling. J Biol Chem. 2000;275:4166–70.

    Article  CAS  PubMed  Google Scholar 

  12. Minami K, Minami M, Harris RA. Inhibition of 5-hydroxytryptamine type 2A receptor-induced currents by n-alcohols and anesthetics. J Pharmacol Exp Ther. 1997;281:1136–43.

    CAS  PubMed  Google Scholar 

  13. Hojo M, Sudo Y, Ando Y, Minami K, Takada M, Matsubara T, Kanaide M, Taniyama K, Sumikawa K, Uezono Y. mu-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: electrophysiological and FRET assay analysis. J Pharmacol Sci. 2008;108:308–19.

    Article  CAS  PubMed  Google Scholar 

  14. Minami K, Sudo Y, Shiraishi S, Seo M, Uezono Y. Analysis of the effects of anesthetics and ethanol on mu-opioid receptor. J Pharmacol Sci. 2010;112:424–31.

    Article  CAS  PubMed  Google Scholar 

  15. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL, Jacoby HI, Selve N. Complementary and synergistic antinociceptive interaction between the enantiomers of tramadol. J Pharmacol Exp Ther. 1993;267:331–40.

    CAS  PubMed  Google Scholar 

  16. Gillen C, Haurand M, Kobelt DJ, Wnendt S. Affinity, potency and efficacy of tramadol and its metabolites at the cloned human mu-opioid receptor. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:116–21.

    Article  CAS  PubMed  Google Scholar 

  17. Stoops WW, Lofwall MR, Nuzzo PA, Craig LB, Siegel AJ, Walsh SL. Pharmacodynamic profile of tramadol in humans: influence of naltrexone pretreatment. Psychopharmacology. 2012;223:427–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hennies HH, Friderichs E, Schneider J. Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids. Arzneimittelforschung. 1988;38:877–80.

    CAS  PubMed  Google Scholar 

  19. Frink MC, Hennies HH, Englberger W, Haurand M, Wilffert B. Influence of tramadol on neurotransmitter systems of the rat brain. Arzneimittelforschung. 1996;46:1029–36.

    CAS  PubMed  Google Scholar 

  20. Desmeules JA, Piguet V, Collart L, Dayer P. Contribution of monoaminergic modulation to the analgesic effect of tramadol. Br J Clin Pharmacol. 1996;41:7–12.

    Article  CAS  PubMed  Google Scholar 

  21. Shiraishi M, Minami K, Uezono Y, Yanagihara N, Shigematsu A. Inhibition by tramadol of muscarinic receptor-induced responses in cultured adrenal medullary cells and in Xenopus laevis oocytes expressing cloned M1 receptors. J Pharmacol Exp Ther. 2001;299:255–60.

    CAS  PubMed  Google Scholar 

  22. Shiga Y, Minami K, Shiraishi M, Uezono Y, Murasaki O, Kaibara M, Shigematsu A. The inhibitory effects of tramadol on muscarinic receptor-induced responses in Xenopus oocytes expressing cloned M(3) receptors. Anesth Analg. 2002;95:1269–73.

    Article  CAS  PubMed  Google Scholar 

  23. Ogata J, Minami K, Uezono Y, Okamoto T, Shiraishi M, Shigematsu A, Ueta Y. The inhibitory effects of tramadol on 5-hydroxytryptamine type 2C receptors expressed in Xenopus oocytes. Anesth Analg. 2004;98:1401–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichiro Minami.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minami, K., Sudo, Y., Miyano, K. et al. µ-Opioid receptor activation by tramadol and O-desmethyltramadol (M1) . J Anesth 29, 475–479 (2015). https://doi.org/10.1007/s00540-014-1946-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-014-1946-z

Keywords

Navigation