Journal of Anesthesia

, Volume 27, Issue 3, pp 433–446

Cardiac surgery-associated acute kidney injury

Review Article


Cardiac surgery-associated acute kidney injury (AKI) is a major health problem that is extremely common and has a significant effect on cardiac surgical outcomes. AKI occurs in nearly 30 % of patients undergoing cardiac surgery, with about 1–2 % of these ultimately requiring dialysis. The development of AKI predicts a significant increase in morbidity and mortality independent of other risk factors. The pathogenetic mechanisms associated with cardiac surgery-associated AKI include several biochemical pathways, of which the most important are hemodynamic, inflammatory and nephrotoxic factors. Risk factors for AKI have been identified in several models, and these facilitate physicians to prognosticate and develop a strategy for tackling patients predisposed to developing renal dysfunction. Effective therapy of the condition is still suboptimal, and hence the accent has always been on risk factor modification. Thus, strategies for reducing preoperative anemia, perioperative blood transfusions and surgical re-explorations may be effective in attenuating the incidence and severity of this complication.


Cardiac surgery Acute kidney injury Risk factors 


  1. 1.
    Conlon PJ, Stafford-Smith M, White WD, Newman MF, King S, Winn MP, Landolfo K: Acute renal failure following cardiac surgery. Nephrol Dial Transpl. 1999;14:1158–62.CrossRefGoogle Scholar
  2. 2.
    Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes and hospital resource utilization. Ann Intern Med. 1998;128:194–203.PubMedCrossRefGoogle Scholar
  3. 3.
    Ostermann ME, Taube D, Morgan CJ, Evans TW. Acute renal failure following cardiopulmonary bypass: a changing picture. Intensive Care Med. 2000;26:565–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Andersson LG, Ekroth R, Bratteby LE, Hallhagen S, Wesslen O. Acute renal failure after coronary surgery: a study of incidence and risk factors in 2009 consecutive patients. J Thorac Cardiovasc Surg. 1993;41:237–41.Google Scholar
  5. 5.
    Zanardo G, Michielon P, Paccagnella A, Rosi P, Calo M, Salandin V, Da Ros A, Michieletto F, Simini G. Acute renal failure in the patient undergoing cardiac operation: prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg. 1994;107:1489–95.PubMedGoogle Scholar
  6. 6.
    Mangos GJ, Brown MA, Chan YA, Horton D, Trew P, Whitworth JA. Acute renal failure following cardiac surgery: incidence, outcomes and risk factors. Aust N Z J Med. 1995;25:284–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Antunes PE, Prieto D, de Oliveira FJ, Antunes MJ. Renal dysfunction alter myocardial revascularization. Eur J Cardiothorac Surg. 2004;25:597–604.PubMedCrossRefGoogle Scholar
  8. 8.
    Loef BG, Epema AH, Smilde TD, Henning RH, Ebels T, Navis G, Stegeman CA. Immediate postoperative renal function deterioration in cardiac surgical patients predicts in-hospital mortality and long-term survival. J Am Soc Nephrol. 2005;16(1):195–200.PubMedCrossRefGoogle Scholar
  9. 9.
    Schmitt H, Riehl J, Boseilla A, Kreis A, Putz-Stork A, Lo HB, Lambertz H, Messmer BJ, Sieberth HG. Acute renal failure following cardiac surgery: pre- and Perioperative clinical features. Contrib Nephrol. 1991;93:98–104.PubMedGoogle Scholar
  10. 10.
    Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med. 1998;104:343–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. ADQI workgroup: acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the Acute Dialysis Quality Initiative (ADQI) group. Crit Care. 2004;8:R204–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG. Acute kidney injury network. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.PubMedCrossRefGoogle Scholar
  13. 13.
    Kellerman PS. Perioperative care of the renal patient. Arch Intern Med. 1994;154:1674–88.PubMedCrossRefGoogle Scholar
  14. 14.
    Swaminathan M, Shaw AD, Phillips-Bute BG, McGugan-Clark PL, Archer LE, Talbert S, Milano CA, Patel UD, Stafford-Smith M. Trends in acute renal failure associated with coronary artery bypass graft surgery in the United States. Crit Care Med. 2007;35(10):2286–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Elahi MM, Lim MY, Joseph RN, Dhannapuneni RR, Spyt TJ. Early hemofiltration improves survival in post-cardiotomy patients with acute renal failure. Eur J Cardiothorac Surg. 2004;26:1027–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Chertow GM, Lazarus JM, Christiansen CL, Cook EF, Hammermeister KE, Grover F, Daley J. Preoperative renal risk stratification. Circulation. 1997;95(4):878–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39(5):930–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Hoste EA, Cruz DN, Davenport A, Mehta RL, Piccinni P, Tetta C, Viscovo G, Ronco C. The epidemiology of cardiac surgery-associated acute kidney injury. Int J Artificial organs. 2008;31(2):158–65.Google Scholar
  20. 20.
    Leacche M, Winkelmayer WC, Paul S, Lin J, Unic D, Rawn JD, Cohn LH, Byrne JG. Predicting survival in patients requiring renal replacement therapy after cardiac surgery. Ann Thorac Surg. 2006;81(4):1385–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Lassnigg AL, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P, Hiesmayr M. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15:1597–605.PubMedCrossRefGoogle Scholar
  22. 22.
    Bhandari S, Turney JH. Survivors of acute renal failure who do not recover renal function. QJM. 1996;89(6):415–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Hoste EAJ, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, Kellum JA. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10:R73–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Praught ML, Shlipak MG. Are small changes in serum creatinine an important risk factor? Curr Opin Nephrol Hypertens. 2005;14(3):265–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Kuitunen A, Vento A, Suojaranta-Ylinen R, Pettila V. Acute renal failure after cardiac surgery: evaluation of the RIFLE classification. Ann Thorac Surg. 2006;81:542–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Callahan M, Battleman DS, Christos E, Fimba M, Whitelaw GI. Economic consequences of renal dysfunction among cardiopulmonary bypass surgery patients: a hospital-based perspective. Value Health. 2003;6:137–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ, Bihorac A. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119:2444–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Klahr S, Miller SB. Acute oliguria. N Engl J Med. 1998;338:671–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Hoste EA, Kellum JA. ARF in the critically ill: impact on morbidity and mortality. Contrib Nephrol. 2004;144:1–11.PubMedCrossRefGoogle Scholar
  30. 30.
    Rocktaeschel J, Morimatsu H, Uchino S, Goldsmith D, Poustie S, Story D, Gutteridge G, Bellomo R. Acid-base status of critically ill patients with acute renal failure: analysis based on Stewart- Figge methodology. Crit Care. 2003;7:R60–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Gunnerson KJ, Song M, Kellum JA. Influence of acid–base balance in patients with sepsis. In: Vincent JL, editors. Yearbook of intensive care and emergency medicine 2004. Berlin: Springer; pp. 58–67.Google Scholar
  32. 32.
    Kellum JA, Song M, Li J. Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells. Am J Physiol Regul Integr Comp Physiol. 2004;286:R686–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Karkouti K, Wijeysundera DN, Yau TM, Callum JL, Cheng DC, Crowther M, Dupuis JY, Fremes SE, Kent B, Laflamme C, Lamy A, Legare JF, Mazer CD, McCluskey SA, Rubens FD, Sawchuk C, Beattie WS. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation. 2009;119(4):495–502.PubMedCrossRefGoogle Scholar
  34. 34.
    Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenbloom M. Reexploration for bleeding is a risk factor for adverse outcomes after cardiac operations. J Thorac Cardiovasc Surg. 1996;111:1037–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Despotis G, Eby C, Lublin DM. A review of transfusion risks and optimal management of perioperative bleeding with cardiac surgery. Transfusion. 2008;48:2S–30S.PubMedCrossRefGoogle Scholar
  36. 36.
    Stallwood MI, Grayson AD, Mills K, Scawn ND. Acute renal failure in coronary artery bypass surgery: independent effect of cardiopulmonary bypass. Ann Thorac Surg. 2004;77:968–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Fransen E, Maessen J, Dentener M, Senden N, Geskes G, Buurman W. Systemic inflammation present in patients undergoing CABG without extracorporeal circulation. Chest. 1998;113:1290–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Dybdahl B, Wahba A, Haaverstad R, Kirkeby-Garstad I, Kierulf P, Espevik T, Sundan A. On-pump versus offpump coronary artery bypass grafting: more heat-shock protein 70 is released after on-pump surgery. Eur J Cardiothorac Surg. 2004;25:985–92.PubMedCrossRefGoogle Scholar
  39. 39.
    Wright G. Hemolysis during cardiopulmonary bypass: update. Perfusion. 2001;16:345–51.PubMedCrossRefGoogle Scholar
  40. 40.
    Puskas JD, Thourani VH, Kilgo P, Cooper W, Vassiliades T, Vega JD, Morris C, Chen E, Schmotzer BJ, Guyton RA, Lattouf OM. Off-pump coronary artery bypass disproportionately benefits high-risk patients. Ann Thorac Surg. 2009;88:1142–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Shroyer AL, Grover FL, Hattler B, Collins JF, McDonald GO, Kozora E, Lucke JC, Baltz JH, Novitzky D. Veterans affairs Randomized On/Off Bypass (ROOBY) Study Group on-Pump versus off-pump coronary artery by pass surgery. N Engl J Med. 2009;361:1827–37.PubMedCrossRefGoogle Scholar
  42. 42.
    Puskas JD, Mack MJ, Smith CR. On-pump versus off-pump CABG. N Engl J Med. 2010;362:851.PubMedCrossRefGoogle Scholar
  43. 43.
    Baliga R, Ueda N, Waler PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Am J Kidney Dis. 1997;29:465–77.PubMedCrossRefGoogle Scholar
  44. 44.
    Swaminathan M, Phillips-Bute BG, Conlon PJ, Smith PK, Newman MF, Stafford-Smith M. The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery. Ann Thorac Surg. 2003;76:784–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Karkouti K, Beattie WS, Wijeysundera DN, Rao V, Chan C, Dattilo KM, Djaiani G, Ivanov J, Karski J, David TE. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg. 2005;129:391–400.PubMedCrossRefGoogle Scholar
  46. 46.
    Thakar CV, Arrigain S, Worley S, Yared J-P, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16:162–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Mehta RH, Grab JD, O‘Brien SM, Bridges CR, Gammie JS, Haan CK, Ferguson TB, Peterson ED; Society of Thoracic Surgeons National Cardiac Surgery Database Investigators. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16.PubMedCrossRefGoogle Scholar
  48. 48.
    Wijeysundera DN, Karkouti K, Dupuis JY, Rao V, Chan CT, Granton JT, Beattie WS. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297(16):1801–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Englberger L, Suri RM, Li Z, Dearani JA, Park SJ, Sundt TM 3rd, Schaff HV. Validation of clinical scores predicting severe acute kidney injury after cardiac surgery. Am J Kidney Dis. 2010;56(4):623–31.PubMedCrossRefGoogle Scholar
  50. 50.
    Vives M, Monedero P, Perez-Valdivieso JR, Garcia-Fernández N, Lavilla J, Herreros J. Spanish Renal Dysfunction in Cardiac Surgery Group. External validation and comparison of three scores to predict the need of renal replacement therapy after cardiac surgery: a multicenter cohort. Int J Artif Organs. 2011;34(4):329–38.PubMedCrossRefGoogle Scholar
  51. 51.
    Palomba H, de Castro I, Neto AL, Lage S, Yu L. Acute kidney injury prediction following elective cardiac surgery: AKICS score. Kidney Int. 2007;72:624–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Krian A. Incidence, prevention, and treatment of acute renal failure following cardiopulmonary bypass. Int Anesthesiol Clin. 1976;14:87–101.PubMedCrossRefGoogle Scholar
  53. 53.
    Liano F. Madrid Acute Renal Failure Study Group. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Kidney Int. 1996;50:811–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62:1539–49.PubMedCrossRefGoogle Scholar
  55. 55.
    Abuelo JG. Normotensive ischemic acute renal failure. N Engl J Med. 2007;357:797–805.PubMedCrossRefGoogle Scholar
  56. 56.
    Stafford-Smith M, Phillips-Bute B, Reddan DN, Black J, Newman MF. The association of epsilonaminocaproic acid with postoperative decrease in creatinine clearance in 1502 coronary bypass patients. Anesth Analg. 2000;91(5):1085–90.PubMedGoogle Scholar
  57. 57.
    Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354(4):353–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Shaw AD, Stafford-Smith M, White WD, Phillips-Bute B, Swaminathan M, Milano C, Welsby IJ, Aronson S, Mathew JP, Peterson ED, Newman MF. The effect of aprotinin on outcome after coronary-artery bypass grafting. N Engl J Med. 2008;358(8):784–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Rosner MH, Okusa MD. Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol. 2006;1:19–32.PubMedCrossRefGoogle Scholar
  60. 60.
    Daemen MA, van de Ven MW, Heineman E, Buurman WA. Involvement of endogenous interleukin-10 and tumor necrosis factor-alpha in renal ischemia-reperfusion injury. Transplantation. 1999;67(6):792–800.PubMedCrossRefGoogle Scholar
  61. 61.
    Moran SM, Myers BD. Pathophysiology of protracted acute renal failure in man. J Clin Invest. 1985;76:1440–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Okusa MD. The inflammatory cascade in acute ischemic renal failure. Nephron. 2002;90:133–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Goligorsky MS, Noiri E, Tsukahara H, Budzikowski AS, Li H. A pivotal role of nitric oxide in endothelial cell dysfunction. Acta Physiol Scand. 2000;168:33–40.PubMedCrossRefGoogle Scholar
  64. 64.
    Caramelo C, Espinoza G, Manzarbeitia F, Cernadas MR, Perez Tejerizo G, Tan D, Mosquera JR, Digiuni E, Monton M, Millas I, Hernando L, Casado S, Lopez-Farre A. Role of endothelium-related mechanisms in the pathophysiology of renal ischemia/reperfusion in normal rabbits. Circ Res. 1996;79:1031–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Kohan DE. Endothelins in the kidney: physiology and pathophysiology. Am J Kidney Dis. 1993;22:493–510.PubMedGoogle Scholar
  66. 66.
    Brezis M, Rosen S. Hypoxia of the renal medulla—Its implications for disease. N Engl J Med. 1995;332:647–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Chou SY, Porush JG, Faubert PF. Renal medullary circulation: hormonal control. Kidney Int. 1990;37:1–13.PubMedCrossRefGoogle Scholar
  68. 68.
    Lequier LL, Nikaidoh H, Leonard SR, Bokovoy JL, White ML, Scannon PJ, Giroir BP. Preoperative and postoperative endotoxemia in children with congenital heart disease. Chest. 2000;117:1706–12.PubMedCrossRefGoogle Scholar
  69. 69.
    Bennett-Guerrero E, Ayuso L, Hamilton-Davies C, White WD, Barclay GR, Smith PK, King SA, Muhlbaier LH, Newman MF, Mythen MG. Relationship of pre-operative antiendotoxin core antibodies and adverse outcomes following cardiac surgery. JAMA. 1997;277:646–50.PubMedCrossRefGoogle Scholar
  70. 70.
    Nilsson L, Kulander L, Nystrom SO, Eriksson O. Endotoxins in cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1990;100:777–80.PubMedGoogle Scholar
  71. 71.
    Riddington DW, Venkatesh B, Boivin CM, Bonser RS, Elliott TS, Marshall T, Mountford PJ, Bion JF. Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA. 1996;275:1007–12.PubMedCrossRefGoogle Scholar
  72. 72.
    Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323:236–41.PubMedCrossRefGoogle Scholar
  73. 73.
    Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol. 1996;27:1201–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Cremer J, Martin M, Redl H, Bahrami S, Abraham C, Graeter T, Haverich A, Schlag G, Borst HG. Systemic inflammatory response after cardiac operations. Ann Thorac Surg. 1996;61:1714–20.PubMedCrossRefGoogle Scholar
  75. 75.
    Taylor K. SIRS—The systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg. 1996;61:1607–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Hornick P, Taylor K. Pulsatile and non-pulsatile perfusion: the continuing controversy. J Cardiothorac Vasc Anesth. 1997;11:310–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Kirklin JK, Blackstone EH, Kirklin JW. Cardiopulmonary bypass: studies on its damaging effects. Blood Purif. 1987;5:168–78.PubMedCrossRefGoogle Scholar
  78. 78.
    Czerny M, Baumer H, Kilo J, Lassnigg A, Hamwi A, Vukovich T, Wolner E, Grimm M. Inflammatory response and myocardial injury following coronary artery bypass grafting with or without cardiopulmonary bypass. Eur J Cardiothorac Surg. 2000;17:737–42.PubMedCrossRefGoogle Scholar
  79. 79.
    Sheridan AM, Bonventre JV. Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens. 2000;9:427–34.PubMedCrossRefGoogle Scholar
  80. 80.
    Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR. Early kidney TNF-expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am J Physiol. 1999;277:R922–9.PubMedGoogle Scholar
  81. 81.
    McCoy RN, Hill KE, Ayon MA, Stein JH, Burk RF. Oxidant stress following renal ischemia: changes in the glutathione redox ratio. Kidney Int. 1998;33:812–7.CrossRefGoogle Scholar
  82. 82.
    Tennenberg SD, Clardy CW, Bailey WW, Solomkin JS. Complement activation and lung permeability during cardiopulmonary bypass. Ann Thorac Surg. 1990;50:597–601.PubMedCrossRefGoogle Scholar
  83. 83.
    Jansen NJ, Van Oeveren W, Gu YJ, Van Vliet MH, Eijsman L, Wildevuur CR. Endotoxin release and tumor necrosis factor formation during cardiopulmonary bypass. Ann Thorac Surg. 1992;54:744–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Tuttle KR, Worrall NK, Dahlstrom LR, Nandagopal R, Kausz AT, Davis CL. Predictors of ARF after cardiac surgical procedures. Am J Kidney Dis. 2003;41:76–83.PubMedCrossRefGoogle Scholar
  85. 85.
    Lazar HL. The use of angiotensin-converting enzyme inhibitors in patients undergoing coronary artery bypass graft surgery. Vascul Pharmacol. 2005;42:119–23.PubMedCrossRefGoogle Scholar
  86. 86.
    Devbhandari MP, Balasubramanian SK, Codispoti M, Nzewi OC, Prasad SU. Preoperative angiotensin-converting enzyme inhibition can cause severe post CPB vasodilation— Current UK opinion. Asian Cardiovasc Thorac Ann. 2004;12:346–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Kwapisz MM, Muller M, Schindler E, Demir S, Veit M, Roth P, Hempelmann G. The effect of intravenous quinaprilat on plasma cytokines and hemodynamic variables during cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:53–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Whinney C. Perioperative medication management: general principles and practical applications. Cleveland Clinic J Med. 2009;76(4):S126–32.CrossRefGoogle Scholar
  89. 89.
    Aspelin P, Aubry P, Fransson SG, Strasser R, Berg KJ, Willenbrock R. Nephrotoxicity in High-Risk Patients Study of Iso-Osmolar and Low-Osmolar Non-Ionic Contrast Media Study Investigators: nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348:491–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Karkouti K, Wijeysundera DN, Yau TM, McCluskey SA, Chan CT, Wong PY, Beattie WS. Influence of erythrocyte transfusion on the risk of acute kidney injury after cardiac surgery differs in anemic and nonanemic patients. Anesthesiology. 2011;115(3):523–30.PubMedCrossRefGoogle Scholar
  91. 91.
    Karkouti K, Wijeysundera DN, Yau TM, McCluskey SA, Chan CT, Wong PY, Crowther MA, Hozhabri S, Beattie WS. Advance targeted transfusion in anemic cardiac surgical patients for kidney protection: an unblinded randomized pilot clinical trial. Anesthesiology. 2012;116(3):613–21.PubMedCrossRefGoogle Scholar
  92. 92.
    Vincent JL, Lelubre C. Preoperative transfusions to limit the deleterious effects of blood transfusions. Anesthesiology. 2012;116(3):513–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Kumar AB, Suneja M. Cardiopulmonary bypass-associated acute kidney injury. Anesthesiology. 2011;114:964–70.PubMedCrossRefGoogle Scholar
  94. 94.
    Woo EB, Tang AT, el-Gamel A, Keevil B, Greenhalgh D, Patrick M, Jones MT, Hooper TL. Dopamine therapy for patients at risk of renal dysfunction following cardiac surgery: science or fiction? Eur J Cardiothorac Surg. 2002;22:106–11.PubMedCrossRefGoogle Scholar
  95. 95.
    Tang AT, El-Gamel A, Keevil B, Yonan N, Deiraniya AK. The effect of ‘renal-dose’ dopamine on renal tubular function following cardiac surgery: assessed by measuring retinol binding protein (RBP). Eur J Cardiothorac Surg. 1999;15:717–21.PubMedCrossRefGoogle Scholar
  96. 96.
    Denton MD, Chertow GM, Brady HR. “Renal-dose” dopamine for the treatment of acute renal failure: scientific rationale, experimental studies and clinical trials. Kidney Int. 1996;50:4–14.PubMedCrossRefGoogle Scholar
  97. 97.
    Ranucci M, Soro G, Barzaghi N, Locatelli A, Giordano G, Vavassori A, Manzato A, Melchiorri C, Bove T, Juliano G, Uslenghi MF. Fenoldopam prophylaxis of postoperative acute renal failure in high-risk cardiac surgery patients. Ann Thorac Surg. 2004;78:1332–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Caimmi PP, Pagani L, Micalizzi E, Fiume C, Guani S, Bernardi M, Parodi F, Cordero G, Fregonara M, Kapetanakis E, Panella M, Degasperis C. Fenoldopam for renal protection in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2003;17:491–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Garwood S, Swamidoss CP, Davis EA, Samson L, Hines RL. A case series of low-dose fenoldopam in seventy cardiac surgical patients at increased risk of renal dysfunction. J Cardiothorac Vasc Anesth. 2003;17:17–21.PubMedCrossRefGoogle Scholar
  100. 100.
    Kramer BK, Preuner J, Ebenburger A, Kaiser M, Bergner U, Eilles C, Kammerl MC, Riegger GA, Birnbaum DE. Lack of renoprotective effect of theophylline during aortocoronary bypass surgery. Nephrol Dial Transplant. 2002;17:910–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Allgren RL, Marbury TC, Rahman SN, Weisberg LS, Fenves AZ, Lafayette RA, Sweet RM, Genter FC, Kurnik BR, Conger JD, Sayegh MH. Anaritide in acute tubular necrosis. Auriculin Anaritide Acute Renal Failure Study Group. N Engl J Med. 1997;336:828–34.PubMedCrossRefGoogle Scholar
  102. 102.
    Sward K, Valsson F, Odencrants P, Samuelsson O, Ricksten SE. Recombinant human atrial natriuretic peptide in ischemic acute renal failure. A randomized placebo controlled trial. Crit Care Med. 2004;32:1310–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Mentzer RM, Oz MC, Sladen RN, Graeve AH, Hebeler RF Jr, Luber JM Jr, Smedira NG, NAPA Investigators. Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery. The NAPA trial. J Am Coll Cardiol. 2007;49:716–26.PubMedCrossRefGoogle Scholar
  104. 104.
    Nigwekar SU, Hix JK. The role of natriuretic peptide administration in cardiovascular surgery-associated renal dysfunction: a systematic review and meta-analysis of randomized controlled trials. J Cardiothorac Vasc Anesth. 2009;23:151–60.PubMedCrossRefGoogle Scholar
  105. 105.
    Jarnberg PO. Renal protection strategies in the perioperative period. Best Pract Res Clin Anaesthesiol. 2004;18:645–60.PubMedCrossRefGoogle Scholar
  106. 106.
    Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol. 2000;11:97–104.PubMedGoogle Scholar
  107. 107.
    Lombardi R, Ferreiro A, Servetto C. Renal function after cardiac surgery. Adverse effect of furosemide. Ren Fail. 2003;25:775–86.PubMedCrossRefGoogle Scholar
  108. 108.
    Engelman RM, Gouge TH, Smith SJ, Stahl WM, Gombos EA, Boyd AD. The effect of diuretics on renal hemodynamics during cardiopulmonary bypass. J Surg Res. 1974;16:268–76.PubMedCrossRefGoogle Scholar
  109. 109.
    Rigden SP, Dillon MJ, Kind PR, de Leval M, Stark J, Barratt TM. The beneficial effect of mannitol on postoperative renal function in children undergoing cardiopulmonary bypass surgery. Clin Nephrol. 1984;21:148–51.PubMedGoogle Scholar
  110. 110.
    Fisher AR, Jones P, Barlow P, Kennington S, Saville S, Farrimond J, Yacoub M. The influence of mannitol on renal function during and after open-heart surgery. Perfusion. 1998;13:181–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Ip-Yam PC, Murphy S, Baines M, Fox MA, Desmond MJ, Innes PA. Renal function and proteinuria after cardiopulmonary bypass: the effects of temperature and mannitol. Anesth Analg. 1994;78:842–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Carcoana OV, Mathew JP, Davis E, Byrne DW, Hayslett JP, Hines RL, Garwood S. Mannitol and dopamine in patients undergoing cardiopulmonary bypass: a randomized clinical trial. Anesth Analg. 2003;97:1222–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Sirivella S, Gielchinsky I, Parsonnet V. Mannitol, furosemide, and dopamine infusion in postoperative renal failure complicating cardiac surgery. Ann Thorac Surg. 2000;69:501–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Bellommo R, Auriemma S, Fabbri A, D’Onofrio A, Katz N, McCullough PA, Ricci Z, Shaw A, Ronco C. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA_AKI). Int J Artif Organs. 2008;31(2):166–78.Google Scholar
  115. 115.
    Durmaz I, Yagdi T, Calkavur T, Mahmudov R, Apaydin AZ, Posacioglu H, Atay Y, Engin C. Prophylactic dialysis in patients with renal dysfunction undergoing on-pump coronary artery bypass surgery. Ann Thorac Surg. 2003;75:859–64.PubMedCrossRefGoogle Scholar
  116. 116.
    Swaminathan M, Hudson CC, Phillips-Bute BG, Patel UD, Mathew JP, Newman MF, Milano CA, Shaw AD, Stafford-Smith M. Impact of early renal recovery on survival after cardiac surgery-associated acute kidney injury. Ann Thorac Surg. 2010;89(4):1098–104.PubMedCrossRefGoogle Scholar
  117. 117.
    Ali ZA, Callaghan CJ, Lim E, Ali AA, Nouraei SA, Akthar AM, Boyle JR, Varty K, Kharbanda RK, Dutka DP, Gaunt ME. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation. 2007;116:I98–105.Google Scholar
  118. 118.
    Choi YS, Shim JK, Chan Kim J, Kang KS, Seo YH, Ahn KR, Kwak YL. Effect of Remote Ischemic preconditioning on renal dysfunction after complex valvular heart surgery: a randomized controlled trial. J Thorac Cardiovasc Surg. 2011;142:148–54.PubMedCrossRefGoogle Scholar
  119. 119.
    Rahman IA, Mascaro JG, Steeds RP, Frenneaux MP, Nightingale P, Gosling P, Townsend P, Townend JN, Green D, Bonser RS. Remote ischemic preconditioning in human coronary artery bypass surgery: from promise to disappointment? Circulation. 2010;122[11 Suppl]:S53–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Haase M, Haase-Fielitz A, Bellomo R, Devarajan P, Story D, Matalanis G, Reade MC, Bagshaw SM, Seevanayagam N, Seevanayagam S, Doolan R, Buxton B, Dragun D. Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial. Crit Care Med. 2009;37:39–47.PubMedCrossRefGoogle Scholar
  121. 121.
    Edelstein CL. Biomarkers of acute kidney injury. Adv Chronic Kidney Dis. 2008;15(3):222–34.PubMedCrossRefGoogle Scholar
  122. 122.
    Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Wagener G, Gubitosa G, Wang S, Borregaard N, Kim M, Lee HT. Increased incidence of acute kidney injury with aprotinin use during cardiac surgery detected with urinary NGAL. Am J Nephrol. 2008;28(4):576–82.PubMedCrossRefGoogle Scholar
  124. 124.
    VandeVoorde RG, Katlman TI, Ma Q. Serum NGAL and cystatin C as predictive biomarkers for acute kidney injury. J Am Soc Nephrol. 2006;17:404A.Google Scholar
  125. 125.
    Perry TE, Muehlschlegel JD, Liu KY, Fox AA, Collard CD, Shernan SK, Body SC. CABG Genomics Investigators. Plasma neutrophil gelatinase-associated lipocalin and acute postoperative kidney injury in adult cardiac surgical patients. Anesth Analg. 2010;110:1541–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Vives M, Lockwood G, Punjabi PP, Krahne D. Neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery. Anesthesiology. 2012;116(2):490–1.PubMedCrossRefGoogle Scholar
  127. 127.
    Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, Goldstein SL, Makris K, Ronco C, Martensson J, Martling CR, Venge P, Siew E, Ware LB, Ikizler TA, Mertens PR. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57(17):1752–61.PubMedCrossRefGoogle Scholar
  128. 128.
    Elahi MM, Gilmour A, Matata BM, Mastana SS. A variant of position-308 of the tumour necrosis factor alpha gene promoter and the risk of coronary heart disease. Heart Lung Circ. 2008;17:14–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Isbir SC, Tekeli A, Ergen A, Yilmaz H, Ak K, Civelek A, Zeybek U, Arsan S. Genetic polymorphisms contribute to acute kidney injury after coronary artery bypass grafting. Heart Surg Forum. 2007;10(6):E439–44.PubMedCrossRefGoogle Scholar
  130. 130.
    Yates RB, Stafford-Smith M. The genetic determinants of renal impairment following cardiac surgery. Semin Cardiothorac Vasc Anesth. 2006;10(4):314–26.PubMedCrossRefGoogle Scholar
  131. 131.
    Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, Dent C, Devarajan P, Edelstein CL. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70:199–203.PubMedCrossRefGoogle Scholar
  132. 132.
    Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, Noiri E, Devarajan P. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2008;73:465–72.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2012

Authors and Affiliations

  1. 1.Department of Anesthesiology and Critical CareJawaharlal Institute of Postgraduate Medical Education & Research (JIPMER)Dhanvantari Nagar, PondicherryIndia

Personalised recommendations