Journal of Anesthesia

, Volume 27, Issue 2, pp 269–283 | Cite as

Clinical application of sepsis biomarkers

  • Vinoth SankarEmail author
  • Nigel R. WebsterEmail author
Invited Review Article


Sepsis is one of the leading causes of death in the critically ill. Early diagnosis is important to avoid delay in instituting appropriate treatment. However, diagnosis can be delayed because of difficulty in interpreting clinical features. Sepsis biomarkers can aid early diagnosis. This article reviews the application of readily available biomarkers for diagnosis of sepsis, for predicting prognosis, and for antibiotic stewardship. 178 biomarkers are described in the literature—ranging from specimen cultures, which lack sensitivity and specificity for early diagnosis of sepsis, to biomarkers such as C-reactive protein, procalcitonin, and genetic biomarkers, which have their own limitations. Future research will mainly focus on use of more than one biomarker, but the main problem in sepsis biomarker research seems to be a lack of a recommended biomarker.


Sepsis Biomarker Procalcitonin C-reactive protein 


  1. 1.
    Bauer M, Reinhart K. Molecular diagnostics of sepsis—where are we today? Int J Med Microbiol. 2010;300:411–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Gonsalves MD, Sakr Y. Early identification of sepsis. Curr Infect Dis Rep. 2010;12:329–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Vincent JL, Donadello K, Schmit X. Biomarkers in the critically ill patient: C-reactive protein. Crit Care Clin. 2011;27:241–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Levy MM. Preface biomarkers in critical illness. Crit Care Clin. 2011;27:xiii–xv.PubMedCrossRefGoogle Scholar
  5. 5.
    Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010;14:R15.PubMedCrossRefGoogle Scholar
  6. 6.
    Shafazand S, Weinacker AB. Blood cultures in the critical care unit: improving utilization and yield. Chest. 2002;122:1727–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Casserly B, Read R, Levy MM. Multimarker panels in sepsis. Crit Care Clin. 2011;27:391–405.PubMedCrossRefGoogle Scholar
  8. 8.
    Rea-Neto A, Youssef NC, Tuche F, Brunkhorst F, Ranieri VM, Reinhart K, Sakr Y. Diagnosis of ventilator-associated pneumonia: a systematic review of the literature. Crit Care. 2008;12:R56.PubMedCrossRefGoogle Scholar
  9. 9.
    Helbig JH, Uldum SA, Bernander S, Luck PC, Wewalka G, Abraham B, Gaia V, Harrison TG. Clinical utility of urinary antigen detection for diagnosis of community-acquired, travel-associated, and nosocomial Legionnaires’ disease. J Clin Microbiol. 2003;41:838–40.Google Scholar
  10. 10.
    Marcos MA, Jimenez de Anta MT, de la Bellacasa JP, Gonzalez J, Martinez E, Garcia E, Mensa J, de Roux A, Torres A. Rapid urinary antigen test for diagnosis of pneumococcal community-acquired pneumonia in adults. Eur Respir J. 2003;21:209–14.Google Scholar
  11. 11.
    Sorde R, Falco V, Lowak M, Domingo E, Ferrer A, Burgos J, Puig M, Cabral E, Len O, Pahissa A. Current and potential usefulness of pneumococcal urinary antigen detection in hospitalized patients with community-acquired pneumonia to guide antimicrobial therapy. Arch Intern Med. 2011;171:166–72.Google Scholar
  12. 12.
    Opal SM, LaRosa SP. Year in review 2008: critical care—sepsis. Crit Care. 2009;13:224.PubMedCrossRefGoogle Scholar
  13. 13.
    Abidi K, Khoudri I, Belayachi J, Madani N, Zekraoui A, Zeggwagh AA, Abouqal R. Eosinopenia is a reliable marker of sepsis on admission to medical intensive care units. Crit Care. 2008;12:R59.Google Scholar
  14. 14.
    Peres Bota D, Melot C, Lopes Ferreira F, Vincent JL. Infection Probability Score (IPS): a method to help assess the probability of infection in critically ill patients. Crit Care Med. 2003;31:2579–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Martini A, Gottin L, Melot C, Vincent JL. A prospective evaluation of the Infection Probability Score (IPS) in the intensive care unit. J Infect. 2008;56:313–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Lobo SM, Lobo FR, Bota DP, Lopes-Ferreira F, Soliman HM, Melot C, Vincent JL. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest. 2003;123:2043–9.Google Scholar
  17. 17.
    Ho KM, Dobb GJ, Lee KY, Towler SC, Webb SA. C-reactive protein concentration as a predictor of intensive care unit readmission: a nested case–control study. J Crit Care. 2006;21:259–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Povoa P, Teixeira-Pinto AM, Carneiro AH. Portuguese Community-Acquired Sepsis Study Group SACiUCI. C-reactive protein, an early marker of community-acquired sepsis resolution: a multi-center prospective observational study. Crit Care. 2011;15:R169.PubMedCrossRefGoogle Scholar
  19. 19.
    Schmit X, Vincent JL. The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection. 2008;36:213–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Silvestre JP, Coelho LM, Povoa PM. Impact of fulminant hepatic failure in C-reactive protein? J Crit Care. 2010;25:657.PubMedCrossRefGoogle Scholar
  21. 21.
    Christ-Crain M, Muller B. Procalcitonin in bacterial infections—hype, hope, more or less? Swiss Med Wkly. 2005;135:451–60.PubMedGoogle Scholar
  22. 22.
    Kibe S, Adams K, Barlow G. Diagnostic and prognostic biomarkers of sepsis in critical care. J Antimicrob Chemother. 2011;66(Suppl 2):33–40.Google Scholar
  23. 23.
    Tang BM, Eslick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis. 2007;7:210–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med. 2006;34:1996–2003.PubMedCrossRefGoogle Scholar
  25. 25.
    Jensen JU, Heslet L, Jensen TH, Espersen K, Steffensen P, Tvede M. Procalcitonin increase in early identification of critically ill patients at high risk of mortality. Crit Care Med. 2006;34:2596–602.PubMedCrossRefGoogle Scholar
  26. 26.
    Luyt CE, Guerin V, Combes A, Trouillet JL, Ayed SB, Bernard M, Gibert C, Chastre J. Procalcitonin kinetics as a prognostic marker of ventilator-associated pneumonia. Am J Respir Crit Care Med. 2005;171:48–53.Google Scholar
  27. 27.
    Ruiz-Alvarez MJ, Garcia-Valdecasas S, De Pablo R, Sanchez Garcia M, Coca C, Groeneveld TW, Roos A, Daha MR, Arribas I. Diagnostic efficacy and prognostic value of serum procalcitonin concentration in patients with suspected sepsis. J Intensive Care Med. 2009;24:63–71.Google Scholar
  28. 28.
    Bouadma L, Luyt CE, Tubach F, Cracco C, Alvarez A, Schwebel C, Schortgen F, Lasocki S, Veber B, Dehoux M, Bernard M, Pasquet B, Regnier B, Brun-Buisson C, Chastre J, Wolff M, PRORATA trial group. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375:463–74.Google Scholar
  29. 29.
    Agarwal R, Schwartz DN. Procalcitonin to guide duration of antimicrobial therapy in intensive care units: a systematic review. Clin Infect Dis. 2011;53:379–87.PubMedCrossRefGoogle Scholar
  30. 30.
    Kopterides P, Siempos II, Tsangaris I, Tsantes A, Armaganidis A. Procalcitonin-guided algorithms of antibiotic therapy in the intensive care unit: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med. 2010;38:2229–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Heyland DK, Johnson AP, Reynolds SC, Muscedere J. Procalcitonin for reduced antibiotic exposure in the critical care setting: a systematic review and an economic evaluation. Crit Care Med. 2011;39:1792–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Jensen JU, Hein L, Lundgren B, Bestle MH, Mohr TT, Andersen MH, Thornberg KJ, Loken J, Steensen M, Fox Z, Tousi H, Soe-Jensen P, Lauritsen AO, Strange D, Petersen PL, Reiter N, Hestad S, Thormar K, Fjeldborg P, Larsen KM, Drenck NE, Ostergaard C, Kjaer J, Grarup J, Lundgren JD. Procalcitonin And Survival Study (PASS) Group. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. 2011;39:2048–58.Google Scholar
  33. 33.
    Diaz-Flores RF. A letter in response to: procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. 2012;40:1038.PubMedCrossRefGoogle Scholar
  34. 34.
    Soo Hoo GW, Wen YE, Nguyen TV, Goetz MB. Impact of clinical guidelines in the management of severe hospital-acquired pneumonia. Chest. 2005;128:2778–87.PubMedCrossRefGoogle Scholar
  35. 35.
    Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med. 2000;162:505–11.PubMedCrossRefGoogle Scholar
  36. 36.
    Rello J, Vidaur L, Sandiumenge A, Rodriguez A, Gualis B, Boque C, Diaz E. De-escalation therapy in ventilator-associated pneumonia. Crit Care Med. 2004;32:2183–90.Google Scholar
  37. 37.
    Micek ST, Ward S, Fraser VJ, Kollef MH. A randomized controlled trial of an antibiotic discontinuation policy for clinically suspected ventilator-associated pneumonia. Chest. 2004;125:1791–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Lancaster JW, Lawrence KR, Fong JJ, Doron SI, Garpestad E, Nasraway SA, Devlin JW. Impact of an institution-specific hospital-acquired pneumonia protocol on the appropriateness of antibiotic therapy and patient outcomes. Pharmacotherapy. 2008;28:852–62.Google Scholar
  39. 39.
    Economic report. Procalcitonin to differentiate bacterial lower respiratory tract infections from non-bacterial causes. March 2010.Google Scholar
  40. 40.
    Gibot S, Buonsanti C, Massin F, Romano M, Kolopp-Sarda MN, Benigni F, Faure GC, Bene MC, Panina-Bordignon P, Passini N, Levy B. Modulation of the triggering receptor expressed on the myeloid cell type 1 pathway in murine septic shock. Infect Immun. 2006;74:2823–30.Google Scholar
  41. 41.
    Barraud D, Gibot S. Triggering receptor expressed on myeloid cell 1. Crit Care Clin. 2011;27:265–79.PubMedCrossRefGoogle Scholar
  42. 42.
    Barati M, Bashar FR, Shahrami R, Zadeh MH, Taher MT, Nojomi M. Soluble triggering receptor expressed on myeloid cells 1 and the diagnosis of sepsis. J Crit Care. 2010;25:362.PubMedCrossRefGoogle Scholar
  43. 43.
    Latour-Perez J, Alcala-Lopez A, Garcia-Garcia MA, Sanchez-Hernandez JF, Abad-Terrado C, Viedma-Contreras JA, Masia M, Gonzalez-Tejera M, Arizo-Leon D, Porcar MJ, Bonilla-Rovira F, Gutierrez F. Diagnostic accuracy of sTREM-1 to identify infection in critically ill patients with systemic inflammatory response syndrome. Clin Biochem. 2010;43:720–4.Google Scholar
  44. 44.
    Kofoed K, Andersen O, Kronborg G, Tvede M, Petersen J, Eugen-Olsen J, Larsen K. Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care. 2007;11:R38.Google Scholar
  45. 45.
    Huh JW, Lim CM, Koh Y, Oh YM, Shim TS, Lee SD, Kim WS, Kim DS, Kim WD, Hong SB. Diagnostic utility of the soluble triggering receptor expressed on myeloid cells-1 in bronchoalveolar lavage fluid from patients with bilateral lung infiltrates. Crit Care. 2008;12:R6.Google Scholar
  46. 46.
    Jiyong J, Tiancha H, Wei C, Huahao S. Diagnostic value of the soluble triggering receptor expressed on myeloid cells-1 in bacterial infection: a meta-analysis. Intensive Care Med. 2009;35:587–95.PubMedCrossRefGoogle Scholar
  47. 47.
    Gibot S, Cravoisy A, Kolopp-Sarda MN, Bene MC, Faure G, Bollaert PE, Levy B. Time-course of sTREM (soluble triggering receptor expressed on myeloid cells)-1, procalcitonin, and C-reactive protein plasma concentrations during sepsis. Crit Care Med. 2005;33:792–6.Google Scholar
  48. 48.
    Selberg O, Hecker H, Martin M, Klos A, Bautsch W, Kohl J. Discrimination of sepsis and systemic inflammatory response syndrome by determination of circulating plasma concentrations of procalcitonin, protein complement 3a, and interleukin-6. Crit Care Med. 2000;28:2793–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Shapiro NI, Trzeciak S, Hollander JE, Birkhahn R, Otero R, Osborn TM, Moretti E, Nguyen HB, Gunnerson KJ, Milzman D, Gaieski DF, Goyal M, Cairns CB, Ngo L, Rivers EP. A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Crit Care Med. 2009;37:96–104.Google Scholar
  50. 50.
    Kofoed K, Eugen-Olsen J, Petersen J, Larsen K, Andersen O. Predicting mortality in patients with systemic inflammatory response syndrome: an evaluation of two prognostic models, two soluble receptors, and a macrophage migration inhibitory factor. Eur J Clin Microbiol Infect Dis. 2008;27:375–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Dhainaut JF, Shorr AF, Macias WL, Kollef MJ, Levi M, Reinhart K, Nelson DR. Dynamic evolution of coagulopathy in the first day of severe sepsis: relationship with mortality and organ failure. Crit Care Med. 2005;33:341–8.Google Scholar
  52. 52.
    Mussap M, Noto A, Fravega M, Fanos V. Soluble CD14 subtype presepsin (sCD14-ST) and lipopolysaccharide binding protein (LBP) in neonatal sepsis: new clinical and analytical perspectives for two old biomarkers. J Matern Fetal Neonatal Med. 2011;24(Suppl 2):12–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Yaegashi Y, Shirakawa K, Sato N, Suzuki Y, Kojika M, Imai S, Takahashi G, Miyata M, Furusako S, Endo S. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother. 2005;11(5):234–8.Google Scholar
  54. 54.
    Endo S, Suzuki Y, Takahashi G, Shozushima T, Ishikura H, Murai A, Nishida T, Irie Y, Miura M, Iguchi H, Fukui Y, Tanaka K, Nojima T, Okamura Y. Usefulness of presepsin in the diagnosis of sepsis in a multicenter prospective study. J Infect Chemother. 2012. doi: 10.1007/s10156-012-0435-2.
  55. 55.
    Okamura Y, Yokoi H. Development of a point-of-care assay system for measurement of presepsin (sCD14-ST). Clin Chim Acta. 2011;412(23–24):2157–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Ivady B, Beres BJ, Szabo D. Recent advances in sepsis research: novel biomarkers and therapeutic targets. Curr Med Chem. 2011;18:3211–25.PubMedCrossRefGoogle Scholar
  57. 57.
    LaRosa SP, Opal SM. Biomarkers: the future. Crit Care Clin. 2011;27:407–19.PubMedCrossRefGoogle Scholar
  58. 58.
    Johnson SB, Lissauer M, Bochicchio GV, Moore R, Cross AS, Scalea TM. Gene expression profiles differentiate between sterile SIRS and early sepsis. Ann Surg. 2007;245:611–21.PubMedCrossRefGoogle Scholar
  59. 59.
    Kumpers P, Lukasz A, David S, Horn R, Hafer C, Faulhaber-Walter R, Fliser D, Haller H, Kielstein JT. Excess circulating angiopoietin-2 is a strong predictor of mortality in critically ill medical patients. Crit Care. 2008;12:R147.Google Scholar
  60. 60.
    Schneider CP, Angele MK, Hartl WH. Activated partial thromboplastin time waveform analysis as specific sepsis marker in cardiopulmonary bypass surgery. Crit Care. 2010;14:104.PubMedCrossRefGoogle Scholar
  61. 61.
    Delannoy B, Guye ML, Slaiman DH, Lehot JJ, Cannesson M. Effect of cardiopulmonary bypass on activated partial thromboplastin time waveform analysis, serum procalcitonin and C-reactive protein concentrations. Crit Care. 2009;13:R180.PubMedCrossRefGoogle Scholar
  62. 62.
    Venkatesh M, Flores A, Luna RA, Versalovic J. Molecular microbiological methods in the diagnosis of neonatal sepsis. Expert Rev Anti Infect Ther. 2010;8:1037–48.PubMedCrossRefGoogle Scholar
  63. 63.
    Lehmann LE, Hunfeld KP, Emrich T, Haberhausen G, Wissing H, Hoeft A, Stuber F. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immunol. 2008;197:313–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Forrest GN, Mankes K, Jabra-Rizk MA, Weekes E, Johnson JK, Lincalis DP, Venezia RA. Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J Clin Microbiol. 2006;44:3381–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Forrest GN, Roghmann MC, Toombs LS, Johnson JK, Weekes E, Lincalis DP, Venezia RA. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob Agents Chemother. 2008;52:3558–63.Google Scholar

Copyright information

© Japanese Society of Anesthesiologists 2012

Authors and Affiliations

  1. 1.Intensive Care UnitAberdeen Royal InfirmaryAberdeenUK

Personalised recommendations