Journal of Anesthesia

, Volume 24, Issue 1, pp 81–95

Possible indications of beta-blockers in the perioperative period other than prevention of cardiac ischemia

Review Article

Abstract

According to the guidelines of the American College of Cardiology/American Heart Association 2006 for perioperative cardiovascular evaluation for non-cardiac surgery, beta-blocker therapy should be considered for high-risk individuals undergoing vascular surgery or high- and intermediate-risk patients undergoing non-cardiac surgery. This guideline might induce physicians to increasingly use beta-blockers in the hope of preventing perioperative cardiac complications. However, beta-blockers have potential beneficial effects outside the prevention of cardiac events. In addition to reducing anesthetic and analgesic requirements during the perioperative period, beta-blockers have neuroprotective effects in patients with brain trauma and possible effectiveness in the management of intraoperative awareness-induced post-traumatic stress disorder. Moreover, intrathecal administration of beta-blockers may have antinociceptive effects. Physicians need to bear in mind the benefits of beta-blockers for purposes other than preventing cardiac events when applied in the perioperative period, and they should be familiar with the pharmacodynamics and risk–benefit ratio with their use. This review focuses on possible extracardiac indications of beta-blockers.

Keywords

Anesthetic requirements Beta-blockers Immunomodulation Intraoperative 

References

  1. 1.
    London MJ, Zaugg M, Schaub MC, Spahn DR. Perioperative beta-adrenergic receptor blockade. Anesthesiology. 2004;100:170–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Fleisher LA, Beckman JA, Brown KA, Calkins H, Charikof EL, Fleischmann KE, et al. ACC/AHA 2006 guideline update on perioperative cardiovascular evaluation for noncardiac surgery: focused update on perioperative beta-blocker therapy. Circulation. 2006;113:2662–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Prichard BNC. Beta-adrenergic receptor blockade in hypertension, past, present and future. Br J Clin Pharmacol. 1978;5:379–99.PubMedGoogle Scholar
  4. 4.
    Zaugg M, Schaub MC, Pasch T, Spahn DR. Modulation of beta-adrenergic receptor subtype activities in perioperative medicine: mechanisms and sites of action. Br J Anaesth. 2002;88:101–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Zaugg M, Tagliente T, Lucchinetti E, Jacobs E, Krol M, Bodian C, et al. Beneficial effects from beta-adrenergic blockade in elderly patients undergoing noncardiac surgery. Anesthesiology. 1999;91:1674–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Johansen JW, Schneider G, Windsor AM, Sebel PS. Esmolol potentiates reduction of minimum alveolar isoflurane concentration by alfentanil. Anesth Analg. 1998;87:671–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Johansen JW, Flaishon R, Sebel PS. Esmolol reduces anesthetic requirement for skin incision during propofol/nitrous oxide/morphine anesthesia. Anesthesiology. 1997;86:361–71.CrossRefGoogle Scholar
  8. 8.
    Stanley TH, Lange SD, Boscoe MJ, Bruun ND. The influence of chronic preoperative propranolol therapy on cardiovascular dynamics and narcotic requirements during operation in patients with coronary artery disease. Can J Anaesth. 1982;29:319–24.CrossRefGoogle Scholar
  9. 9.
    Smith I, Hemelrijck JV, White PF. Efficacy of esmolol versus alfentanil as a supplement to propofol–nitrous oxide anesthesia. Anesth Analg. 1991;73:540–6.PubMedGoogle Scholar
  10. 10.
    Johansen JW. Esmolol promotes electroencephalographic burst suppression during propofol/alfentanil anesthesia. Anesth Analg. 2001;93:1526–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Coloma M, Chu JW, White PF, Armbruster SC. The use of esmolol as an alternative to remifentanil during desflurane anesthesia for fast-track outpatient gynecologic laparoscopic surgery. Anesth Analg. 2001;92:352–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Menigaux C, Guignard B, Adam F, Sessler DI, Joly V, Chauvin M. Esmolol prevents movement and attenuates the BIS response to orotracheal intubation. Br J Anaesth. 2002;89:857–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Zaugg M, Tagliente T, Silverstein JH, Lucchinetti E. Atenolol may not modify anesthetic depth indicators in elderly patients––a second look at the data. Can J Anaesth. 2003;50:638–42.PubMedCrossRefGoogle Scholar
  14. 14.
    Berkenstadt H, Loebstein R, Faibishenko I, Halkin H, Keidan I, Perel A. Effect of a single dose of esmolol on the bispectral index scale (BIS) during propofol/fentanyl anesthesia. Br J Anaesth. 2002;89:509–11.PubMedCrossRefGoogle Scholar
  15. 15.
    Wilson ES, McKinlay S, Crawford JM, Robb HM. The influence of esmolol on the dose of propofol required for induction of anesthesia. Anaesthesia. 2004;59:122–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Ghosh I, Bithal PK, Dash HH, Chaturvedi A, Prabhakar H. Both clonidine and metoprolol modify anesthetic depth indicators and reduce intraoperative propofol requirement. J Anesth. 2008;22:131–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Collard V, Mistraletti G, Taqi A, Asenjo JF, Feldman LS, Fried GM, et al. Intraoperative esmolol infusion in the absence of opioids spares postoperative fentanyl in patients undergoing ambulatory laparoscopic cholecystectomy. Anesth Analg. 2007;105:1255–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Tanifuji Y, Eger EI II. Effect of isoproterenol and propranolol on halothane MAC in dogs. Anesth Analg. 1976;55:383–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Orme R, Leslie K, Umranikar A, Ugoni A. Esmolol and anesthetic requirement for loss of responsiveness during propofol anesthesia. Anesth Analg. 2002;93:112–6.CrossRefGoogle Scholar
  20. 20.
    Larson MD, Sessler DI, Washington DE, Merrifield BR, Hynson JA, McGuire J. Pupillary response to noxious stimulation during isoflurane and propofol anesthesia. Anesth Analg. 1993;76:1072–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Iguchi S, Iwamura H, Nishizaki M, Hayashi A, Senokuchi K, Kobayashi K, et al. Development of a highly cardioselective ultra-short-acting beta-blocker, ONO-1101. Chem Pharm Bull. 1992;40:1462–9.PubMedGoogle Scholar
  22. 22.
    Atarashi H, Kuruma A, Yashima M, Saitoh H, Ino T, Endoh Y, et al. Pharmacokinetics of landiolol hydrochloride, a new ultra-short-acting beta-blocker, in patients with cardiac arrhythmias. Clin Pharmacol Ther. 2000;68:143–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Sasao J, Traver SD, Kindscher JD, Taneyama C, Benson KT, Goto H. In rabbits, landiolol, a new ultra-short-acting beta blocker, exerts a more potent negative chronotropic effect and less effect on blood pressure than esmolol. Can J Anaesth. 2001;48:985–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Kurita T, Takata K, Morita K, Sato S. Lipophilic beta-adrenoceptor antagonist propranolol increases the hypnotic and anti-nociceptive effects of isoflurane in a swine model. Br J Anaesth. 2008;100:841–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Tanabe T, Fukusaki M, Fujinaga A, Ando Y, Yamashita K, Terao Y, et al. Landiolol, a new ultra-short-acting beta 1-blocker, reduces anesthetic requirement during sevoflurane/N2O/fentanyl anesthesia in surgical patients. Eur J Anaesthesiol. 2009;26:39–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Kurita T, Takata K, Uraoka M, Morita K, Sato S. Landiolol, an ultra-short-acting beta 1-adrenoceptor antagonist, does not alter the minimum alveolar anesthetic concentration of isoflurane in a swine model. Anesth Analg. 2007;105:656–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Kurita T, Morita K, Fukuda K, Takata K, Uraoka M, Sanjo Y, et al. Landiolol, an ultra-short-acting beta 1-adrenoceptor antagonist, dose not alter the electroencephalographic effect of isoflurane in swine model. Br J Anaesth. 2006;96:602–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Yang H, Fayad A. Are beta-blockers anesthetics? Can J Anaesth. 2003;50:627–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Ginsburg RS. Is intravenous esmolol an acceptable substitute for an inadequate anesthetic? Anesth Analg. 1982;74:76–777.Google Scholar
  30. 30.
    Rusell IF, Wang M. Absence of memory for intra-operative information during surgery with total intravenous anesthesia. Br J Anaesth. 2001;86:196–202.CrossRefGoogle Scholar
  31. 31.
    Upton RN, Ludbrook GL, Grant C, Martinez AM. Cardiac output is a determinant of the initial concentrations of propofol after short infusion administration. Anesth Analg. 1999;89:545–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Antognini JF, Schwartz K. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology. 1993;79:1244–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Borges M, Antognini JF. Does the brain influence somatic responses to noxious stimuli during isoflurane anesthesia? Anesthesiology. 1994;81:1511–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in rats. Anesthesiology. 1993;78:707–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Davidson EM, Doursout MF, Szmuk P, Chelly JE. Antinociceptive and cardiovascular properties of esmolol following formalin injection in rats. Can J Anaesth. 2001;48:59–64.PubMedCrossRefGoogle Scholar
  36. 36.
    Taira Y, Kakinohana M, Kakinohana O, Okuda Y. ONO 1101, a novel ultra-short acting beta-1 blocker, can reduce pain behaviour in the rat formalin test. Anesthesiology. 1998;89:A1128.CrossRefGoogle Scholar
  37. 37.
    Kinjo S, Kakinohana M, Sugawara K. Esmolol and landiolol, ultra short acting beta-1 blockers can reduce pain behavior in the rat formalin test. Anesth Analg. 2005;100:S-265.Google Scholar
  38. 38.
    Zhao H, Sugawara T, Miura S, Iijima T, Kashimoto S. Intrathecal landiolol inhibits nociception and spinal c-Fos expression in the mouse formalin test. Can J Anaesth. 2007;54:201–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Chia YY, Chan MH, Ko NH, Liu K. Role of beta-blockade in anesthesia and postoperative pain management after hysterectomy. Br J Anaesth. 2004;93:799–805.PubMedCrossRefGoogle Scholar
  40. 40.
    Tanahashi S, Iida H, Oda A, Osawa Y, Dohi S. Effect of beta-adrenoceptor antagonists on tetrodotoxin-resistant Na channels in rat dorsal root ganglion neurons. Anesthesiology. 2003;99:A–962.Google Scholar
  41. 41.
    Berridge CW, Foote SL. Enhancement of Behavioral and electroencephalographic indices of waking following stimulation of noradrenergic beta-receptors within the medial septal region of the basal forebrain. J Neurosci. 1996;16:6999–7009.PubMedGoogle Scholar
  42. 42.
    Berridge CW, White K. Contrasting effect of noradrenergic beta-receptor blockade within the median septal area on forebrain electroencephalographic and behavioral activity state in anesthetized and unanesthetized rat. Neuroscience. 2000;97:543–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Berridge CW, Morris MF. Amphetamine-induced activation of forebrain EEG is prevented by noradrenergic beta-receptor blockade in the halothane-anesthetized rat. Psychopharmacology (Berl). 2000;148:307–13.CrossRefGoogle Scholar
  44. 44.
    Radisavievic Z, Cepeda C, Peacock W, Buchwald NA, Levine MS. Norepinephrine modulates excitatory amino acid-induced responses in developing human and adult rat cerebral cortex. Int J Dev Neurosci. 1994;12:353–61.CrossRefGoogle Scholar
  45. 45.
    Howie MB, Bloack HA, Zvara D, McSweeney TD, Martin DJ, Coffman JA. Esmolol reduces automatic hypersensitivity and length of seizures induced by electroconvulsive therapy. Anesth Analg. 1990;71:384–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Van den Broek WW, Leentjens AFG, Mulder PGF, Kusuma A, Bruijn JA. Low-dose esmolol bolus reduces seizure duration during electroconvulsive therapy: a double-blind, placebo-controlled study. Br J Anaesth. 1999;83:271–4.PubMedGoogle Scholar
  47. 47.
    Kovac AL, Goto H, Arakawa K. Esmolol bolus and infusion attenuates increases in blood pressure and heart rate during electroconvulsive therapy. Can J Anaesth. 1990;37:58–62.PubMedCrossRefGoogle Scholar
  48. 48.
    Drummond PD. Noradrenaline increases hyperalgesia to heat in skin sensitized by capsaicin. Pain. 1995;60:311–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Khasar SG. Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol. 1999;81:1104–12.PubMedGoogle Scholar
  50. 50.
    Garabededian BS, Poole S, Haddad JJ, Massaad CA, Jabbur SJ, Saade NE. The role of the sympathetic efferents in endotoxin-induced localized inflammatory hyperalgesia and cytokine upregulation. Neuropharmacology. 2002;42:864–72.CrossRefGoogle Scholar
  51. 51.
    Cunha FQ, Lorenzetti BB, Poole S, Ferreira SH. Interleukin-8 as a mediator of sympathetic pain. Br J Pharmacol. 1991;104:765–7.PubMedGoogle Scholar
  52. 52.
    Ernberg M, Lundeberg T, Kopp S. Effect of propranolol and granisetron on experimentally induced pain and allodynia/hyperalgesia b intramuscular injection of serotonin into the human masseter muscle. Pain. 2000;84:339–46.PubMedCrossRefGoogle Scholar
  53. 53.
    Ko DT, Hebert PR, Coffey CS, Sedrakyan A, Curtis JP, Krumholz HM. Beta-blocker therapy and symptoms of depression, fatigue, and sexual dysfunction. JAMA. 2002;288:351–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Brismar K, Hylander B, Eliasson K, Rossner S, Wetterberg L. Melatonin secretion related to side-effects of beta-blockers from the central nervous system. Acta Med Scand. 1988;223:525–30.PubMedGoogle Scholar
  55. 55.
    Kostis JB, Rosen RC. Central nervous system effects of beta-adrenergic blocking drugs: the role of ancillary properties. Circulation. 1987;75:204–12.PubMedGoogle Scholar
  56. 56.
    Betts TA, Alford C. Beta-blockers and sleep: a controlled trial. Eur J Clin Pharmacol. 1985;28:65–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Van Stegeren AH, Everaerd W, Cahill L, McGaugh JL, Gooren LJG. Memory for emotional events: differential effects of centrally versus peripherally acting beta-blocking agents. Psychopharmacology. 1998;138:305–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Przybyslawski J, Roullet P, Sara SJ. Attention of emotional and nonemotional memories after their reactivation: role of beta-adrenergic receptors. J Neurosci. 1999;19:6999–7009.Google Scholar
  59. 59.
    Gleiter CH, Deckert J. Adverse CNS-effects of beta-adrenoceptor blockers. Pharmacopsychiatry. 1996;29:201–11.PubMedCrossRefGoogle Scholar
  60. 60.
    Nielson KA, Jensen RA. Beta-adrenergic receptor antagonist antihypertensive medications impair arousal-induced modulation of working memory in elderly humans. Behav Neural Biol. 1994;62:190–200.PubMedCrossRefGoogle Scholar
  61. 61.
    Yamada Y, Shibuya F, Hamada J, Sawada Y, Iga T. Prediction of sleep disorders induced by beta-adrenergic receptor blocking agents based on receptor occupancy. J Pharmacokinet Biopharm. 1995;23:131–45.PubMedCrossRefGoogle Scholar
  62. 62.
    Brismar K, Moqensen L, Wetterberq L. Depressed melatonin secretion in patients with nightmares due to beta-adrenoceptor blocking drugs. Acta Med Scand. 1987;221:155–8.PubMedGoogle Scholar
  63. 63.
    Thompson DF, Pierce DR. Drug-induced nightmares. Ann Pharmacother. 1999;33:93–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Cahill L, Prins B, Weber M, McGaugh JL. Beta-adrenergic activation and memory for emotional events. Nature. 1994;371:702–4.PubMedCrossRefGoogle Scholar
  65. 65.
    McAinsh J, Cruickshank JM. Beta-blockers and central nervous system side effects. Pharmacol Ther. 1990;46:163–97.PubMedCrossRefGoogle Scholar
  66. 66.
    Kayed K, Godtlibsen OB. Central effects of the beta-adrenergic blocking agent acebutolol. A quantitative EEG study using normalized slope descriptors. Eur J Clin Pharmacol. 1997;12:327–31.CrossRefGoogle Scholar
  67. 67.
    Kayed K, Godtlibsen OB. Effects of the beta-adrenoceptor antagonists acebutolol and metoprolol on sleep pattern in normal subjects. Eur J Clin Pharmacol. 1977;16:323–6.CrossRefGoogle Scholar
  68. 68.
    Pitman RK, Sanders KM, Zusman RM, Healy AR, Cheema F, Lasko NB, et al. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol Psychiatry. 2002;51:189–92.PubMedCrossRefGoogle Scholar
  69. 69.
    Larkin M. Can post-traumatic stress disorder be put on hold? Lancet. 1999;354:1008.PubMedCrossRefGoogle Scholar
  70. 70.
    Lysko PG, Lysko KA, Yue TL, Webb CL, Gu JL, Feuerstein G. Neuroprotective effects of carvedilol, a new antihypertensive agent, in cultured rat cerebellar neurons and in gerbil global brain ischemia. Stroke. 1992;11:1630–5.Google Scholar
  71. 71.
    Savitz SI, Erhardt JA, Anthony JV, Gupta G, Li X, Barone FC, et al. The novel beta-blocker, carvedilol, provides neuroprotection in transient focal stroke. J Cereb Blood Flow Metab. 2000;8:1197–204.CrossRefGoogle Scholar
  72. 72.
    Amory DW, Grigore A, Amory JK, Gerhardt MA, White WD, Smith PK, et al. Neuroprotection is associated with beta-adrenergic receptor antagonists during cardiac surgery: evidence from 2,575 patients. J Cardiothorac Vasc Anesth. 2002;16:270–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Inaba K, Teixeira PG, David JS, Chan LS, Salim A, Brown C, et al. Beta-blockers in isolated blunt head injury. J Am Coll Surg. 2008;206:432–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Riordan WP Jr, Cotton BA, Norris PR, Waitman LR, Jenkins JM, Morris JA Jr. Beta-blocker exposure in patients with severe traumatic brain injury (TBI) and cardiac uncoupling. J Trauma. 2007;63:503–10.PubMedCrossRefGoogle Scholar
  75. 75.
    Arbabi S, Campion EM, Hemmila MR, Barker M, Dimo M, Ahrns KS, et al. Beta-blocker use is associated with improved outcomes in adult trauma patients. J Trauma. 2007;62:56–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Cotton BA, Snodgrass KB, Fleming SB, Carpenter RO, Kemp CD, Arbogast PG, et al. Beta-blocker exposure is associated with improved survival after severe traumatic brain injury. J Trauma. 2007;62:26–33.PubMedCrossRefGoogle Scholar
  77. 77.
    Martin M, Mullenix P, Rhee P, Belzberg H, Demetriades D, Salim A. Troponin increases in the critically injured patient: mechanical trauma or physiologic stress? J Trauma. 2005;59:1086–91.PubMedCrossRefGoogle Scholar
  78. 78.
    Little JR, Latchaw JP Jr, Slugg RM, Stowe NT. Treatment of acute focal cerebral ischemia with propranolol. Stroke. 1982;13:302–7.PubMedGoogle Scholar
  79. 79.
    Standefer M, Little JR. Improved neurological outcome in experimental focal cerebral ischemia treated with propranolol. Neurosurgery. 1986;18:136–40.PubMedCrossRefGoogle Scholar
  80. 80.
    Junker V, Becker A, Huhne R, Zembatov M, Ravati A, Culmsee C, et al. Stimulation of beta-adrenoceptors activates astrocytes. Eur J Pharmacol. 2002;446:25–36.PubMedCrossRefGoogle Scholar
  81. 81.
    Goyagi T, Kimura T, Nishikawa T, Tobe Y, Masaki Y. Beta-adrenoceptor antagonist attenuates brain injury after transient focal ischemia in rats. Anesth Analg. 2006;103:658–63.PubMedCrossRefGoogle Scholar
  82. 82.
    Goyagi T. Neuroprotection (in Japanese). J Jpn Clin Anesth. 2007;27:588–98.CrossRefGoogle Scholar
  83. 83.
    Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by post-stroke T helper cell type 1 like immunostimulation. J Exp Med. 2003;198:725–36.PubMedCrossRefGoogle Scholar
  84. 84.
    Nessler J, Nessler B, Kitlinski M, Gackowski A, Piwowarska W, Stepniewski M. Concentration of BNP, endothelin 1, pro-inflammatory cytokines (TNF-alpha, IL-6) and exercise capacity in patients with heart failure treated with carvedilol. Kardiol Pol. 2008;66:144–51.PubMedGoogle Scholar
  85. 85.
    Sachs D, Cunha FQ, Poole S, Ferreira SH. Tumor necrosis factor-alpha, interleukin-1 beta and interleukin-8 induce persistent mechanical nociceptor hypersensitivity. Pain. 2002;96:89–97.PubMedCrossRefGoogle Scholar
  86. 86.
    Nishio R, Shioi T, Sasayama S, Matsumori A. Carvedilol increases the production of interleukin-12 and interferon-gamma and improves the survival of mice infected with the encephalomyocarditis virus. J Am Coll Cardiol. 2003;41:340–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Klehmet J, Harms H, Richter M, Prass K, Volk HD, Dirnagl U, et al. Stroke-induced immunodepression and post-stroke infections: lessons from the preventive antibacterial therapy in stroke trial. Neuroscience. 2008;13:1–13.Google Scholar
  88. 88.
    Woiciechowsky C, Asadullah K, Nestler D, Eberhardt B, Platzer C, Schoning B, et al. Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat Med. 1998;4:808–13.PubMedCrossRefGoogle Scholar
  89. 89.
    Katafuchi T, Take S, Hori T. Roles of sympathetic nervous system in the suppression of cytotoxicity of splenic natural killer cells in the rat. J Physiol. 1993;465:343–57.PubMedGoogle Scholar
  90. 90.
    Cheng X, Liao YH, Li B, Yang YL, Zhang JY, Lu BJ, et al. Effects of early treatment with metoprolol on myocardial inflammatory cytokine expression and heart function in rats with acute myocardial infarction. Zhonghua Xin Xue Guan Bing Za Zhi. 2005;33:448–52.PubMedGoogle Scholar
  91. 91.
    Li B, Liao YH, Cheng X, Ge H, Guo H, Wang M. Effects of carvedilol on cardiac cytokines expression and remodeling in rat with acute myocardial infarction. Int J Cardiol. 2006;111:247–55.PubMedCrossRefGoogle Scholar
  92. 92.
    Prabhu SD, Chandrasekar B, Murray DR, Freeman GL. Beta-adrenergic blockade in developing heart failure. Effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation. 2000;101:2103–9.PubMedGoogle Scholar
  93. 93.
    Gullestad L, Ueland T, Brunsviq A, Kiekshus J, Simonsen S, Froland SS. Effect of metoprolol on cytokine levels in chronic heart failure––a substudy in the metoprolol controlled-release randomized intervention trial in heart failure (MERIT-HF). Am Heart J. 2001;141:418–21.PubMedCrossRefGoogle Scholar
  94. 94.
    Loiek A, Pecivova J, Macickova T, Nosal R, Papezikova I, Ciz M. Effect of carvedilol on the production of reactive oxygen species by HL-60 cells. Neuro Endocrinol Lett. 2008;29:779–83.Google Scholar
  95. 95.
    Lang CH, Nystrom G, Frost RA. Beta-adrenergic blockade exacerbates sepsis-induced changes in tumor necrosis factor alpha and interleukin-6 in skeletal muscle and is associated with impaired translation initiation. J Trauma. 2008;64:477–86.PubMedCrossRefGoogle Scholar
  96. 96.
    Schmitz D, Wilsenack K, Lendemanns S, Schedlowski M, Oberbeck R. Beta-adrenergic blockade during systemic inflammation: impact on cellular immune functions and survival in a murine model of sepsis. Resuscitation. 2007;72:286–94.PubMedCrossRefGoogle Scholar
  97. 97.
    Jeschke MG, Norbury WB, Finnerty CC, Branski LK, Herndon DN. Propranolol does not increase inflammation, sepsis, or infectious episodes in severely burned children. J Trauma. 2007;62:676–81.PubMedCrossRefGoogle Scholar
  98. 98.
    Oberbeck R. Catecholamines: physiological immunomodulators during health and illness. Curr Med Chem. 2006;13:1970–89.CrossRefGoogle Scholar
  99. 99.
    Benish M, Bartal I, Goldfarb Y, Levi B, Avraham R, Raz A, et al. Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol. 2008;15:2042–52.PubMedCrossRefGoogle Scholar
  100. 100.
    McBride WT, Armstrong MA, McBridge SJ. Immunomodulation: an important concept in modern anaesthesia. Anaesthesia. 1996;51:465–73.PubMedCrossRefGoogle Scholar
  101. 101.
    Nquyen LP, Omoluabi O, Parra S, Frieske JM, Clement C, Ammar-Aouchiche Z, et al. Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol. 2008;38:256–62.CrossRefGoogle Scholar
  102. 102.
    Brimioulle S, Vachiery JL, Brichant JF, Delcroix M, Lejeune P, Naeije R. Sympathetic modulation of hypoxic pulmonary vasoconstriction in intact dogs. Cardiovasc Res. 1997;34:384–92.PubMedCrossRefGoogle Scholar
  103. 103.
    Shirai M, Shindo T, Ninomiya I. Beta-adrenergic mechanisms attenuate hypoxic pulmonary vasoconstriction during systemic hypoxia in cats. Am J Physiol. 1994;266:H1777–85.PubMedGoogle Scholar
  104. 104.
    Turner DAB, Shribman AJ, Smith G, Achola KJ. Effect of halothane on cardiovascular and plasma catecholamine responses to tracheal intubation. Br J Anaesth. 1986;58:1365–70.PubMedCrossRefGoogle Scholar
  105. 105.
    Stoelting RK. Circulatory changes during direct laryngoscopy and tracheal intubation; influence of duration of laryngoscopy with or without lidocaine. Anesthesiology. 1977;47:381–4.PubMedCrossRefGoogle Scholar
  106. 106.
    Angelard B, Debry C, Planquart X, Dubos S, Dominici L, Gondret R. Difficult intubation. A prospective study. Ann Otolaryngol Chir Cervicofac. 1991;108:241–3.PubMedGoogle Scholar
  107. 107.
    Bucx MJL, Van Geel RTM, Scheck PAE, Stijnen T. Cardiovascular effects of forces applied during laryngoscopy. The importance of tracheal intubation. Anaesthesia. 1992;47:1029–33.PubMedCrossRefGoogle Scholar
  108. 108.
    Vohra A, Kumar S, Charlton AJ, Olukoga AO, Boulton AJ, McLeod D. Effect of diabetes mellitus on the cardiovascular responses to induction of anesthesia and tracheal intubation. Br J Anaesth. 1993;71:258–61.PubMedCrossRefGoogle Scholar
  109. 109.
    Low JM, Harvey JT, Prys-Roberts C, Olukoga AO, Boulton AJ, McLeod D. Studies of anesthesia in relation to hypertension. VII. Adrenergic responses to laryngoscopy. Br J Anaesth. 1986;58:471–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Roy WL, Edelist G, Gilbert B. Myocardial ischemia during non-cardiac surgery procedures in patients with coronary artery disease. Anesthesiology. 1979;51:393–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Fox EJ, Sklar GS, Hill CH, Villanueva R, King BD. Complications related to the pressure responses to endotracheal intubation. Anesthesiology. 1977;47:524–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Figueredo E, Garcia-Fuentes EM. Assessment of the efficacy of esmolol on the hemodynamic changes induced by laryngoscopy and tracheal intubation. Acta Anaesthesiol Scand. 2001;45:1011–22.PubMedCrossRefGoogle Scholar
  113. 113.
    Mio Y. New ultra-short-acting beta-blockers: landiolol and esmolol(in Japanese). Masui. 2006;55:841–8.PubMedGoogle Scholar
  114. 114.
    Onaka M, Yamamoto H. Effects of continuous infusion of landiolol on the hemodynamic response to tracheal intubation (in Japanese). Masui. 2006;55:174–8.PubMedGoogle Scholar
  115. 115.
    Kitamura A, Sakamoto A, Inoue T, Ogawa R. Efficacy of an ultrashort-acting beta-adrenergic blocker (ONO-1101) in attenuating cardiovascular responses to endotracheal intubation. Eur J Clin Pharmacol. 1997;51:467–71.PubMedCrossRefGoogle Scholar
  116. 116.
    Hasuo H, Tomiyasu S, Hojo M, Fujigaki T, Fukusaki M, Sumikawa K. Effect of ONO-1101, a novel short-acting beta-blocker, on hemodynamic responses to isoflurane inhalation and tracheal intubation. J Anesth. 1998;12:115–8.CrossRefGoogle Scholar
  117. 117.
    Yamazaki A, Kinoshita H, Shimogai M, Fujii K, Nakahata K, Hironaka Y, et al. Landiolol attenuates tachycardia in response to endotracheal intubation without affecting blood pressure. Can J Anaesth. 2005;52:254–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Oda Y, Nishikawa K, Hase I, Asada A. The short-acting beta-1 adrenoceptor antagonists esmolol and landiolol suppress the bispectral index response to tracheal intubation during sevoflurane anesthesia. Anesth Analg. 2005;100:733–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Sugiura S, Seki S, Hidaka K, Masuoka M, Tsuchida H. The hemodynamic effects of landiolol, an ultra-short acting beta-1 selective blocker, on endotracheal intubation in patients with and without hypertension. Anesth Analg. 2007;104:124–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Dyson A, Isaac PA, Pennant JH, Giesecke AH, Lipton JM. Esmolol attenuates cardiovascular responses to extubation. Anesth Analg. 1990;71:675–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Kurian SM, Evans R, Fernandes NO, Sherry KM. The effect of an infusion of esmolol on the incidence of myocardial ischemia during tracheal extubation following coronary artery surgery. Anaesthesia. 2001;56:1163–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Kovac AL, Massiongale A. Comparison of nicardipine versus esmolol in attenuating the hemodynamic responses to anesthesia emergence and extubation. J Cardiothorac Vasc Anesth. 2007;21:45–50.PubMedCrossRefGoogle Scholar
  123. 123.
    Grillo P, Bruder N, Auquier P, Pellissier D, Gouin F. Esmolol blunts the cerebral blood flow velocity increase during emergence from anesthesia in neurosurgical patients. Anesth Analg. 2003;96:1145–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Nonaka A, Suzuki S, Abe F. The effects of continuous infusion of landiolol on heart rate changes after neostigmine-atropine administration during recovery from general anesthesia (in Japanese). Masui. 2006;55:1459–62.PubMedGoogle Scholar
  125. 125.
    Nakagawa H, Nanba M, Okayama Y. Landiolol prevented myocardial ischemia in a patient with severe aortic stenosis undergoing total gastrectomy (in Japanese). Masui. 2007;56:582–5.PubMedGoogle Scholar
  126. 126.
    Shirasaka T, Iwasaki T, Hosokawa N, Komatsu M, Kasaba T, Takasaki M. Effects of landiolol on the cardiovascular response during tracheal extubation. J Anesth. 2008;22:322–5.PubMedCrossRefGoogle Scholar
  127. 127.
    Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis risk in communities study. N Engl J Med. 2000;342:905–12.PubMedCrossRefGoogle Scholar
  128. 128.
    Bakris GL, Fonseca V, Katholi RE, McGill JB, Messerli FH, Phillips RA, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension. JAMA. 2004;292:2227–36.PubMedCrossRefGoogle Scholar
  129. 129.
    Day JL, Metcalfe J, Simpson CN. Adrenergic mechanisms in control of plasma lipid concentration. Br Med J. 1982;284:1145–8.CrossRefGoogle Scholar
  130. 130.
    Kjeldsen SE, Syvertsen JO, Hedner T. Cardiac conduction with diltiazem and beta-blockade combined. A review and report on cases. Blood Press. 1996;5:260–3.PubMedCrossRefGoogle Scholar
  131. 131.
    Brouwer RM, Follath F, Buhler FR. Review of the cardiovascular adversity of the calcium antagonist beta-blocker combination: implications for antihypertensive therapy. J Cardiovasc Pharmacol. 1985;7:S38–44.PubMedCrossRefGoogle Scholar
  132. 132.
    Westphal K, Weinbrenner A, Giessmann T, Stuhr M, Franke G, Zschiesche M, et al. Oral bioavailability of digoxin is enhanced by talinolol: evidence for involvement of intestinal P-glycoprotein. Clin Pharmacol Ther. 2000;68(1):6–12.PubMedCrossRefGoogle Scholar
  133. 133.
    Lilja M, Jounela AJ, Juustila H, Mattila MJ. Interaction of clonidine and beta-blockers. Acta Med Scand. 1980;207:173–6.PubMedGoogle Scholar
  134. 134.
    Garvey HL, Woodhouse BL. Reversal of clonidine-induced hypotension by beta-adrenoceptor blocking drugs. Eur J Pharmacol. 1980;65:55–62.PubMedCrossRefGoogle Scholar
  135. 135.
    Haidar SH, Moreton JE, Liang Z, Hoke JF, Muir KT, Eddington ND. The pharmacokinetics and electroencephalogram response of remifentanil alone and in combination with esmolol in the rat. Pharm Res. 1997;14:1817–23.PubMedCrossRefGoogle Scholar
  136. 136.
    Haidar SH, Moreton JE, Liang Z, Hoke JF, Muir KT, Eddington ND. Evaluating a possible pharmacokinetic interaction between remifentanil and esmolol in the rat. J Pharm Sci. 1997;86:1278–82.PubMedCrossRefGoogle Scholar
  137. 137.
    Zhou W, Fontenot HJ, Wang SN, Kennedy RH. Propofol-induced alterations in myocardial beta-adrenoceptor binding and responsiveness. Anesth Analg. 1999;89:604–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Hanouz JL, Riou B, Massias L, Lecarpentier Y, Coriat P. Interaction of halothane with alpha- and beta-adrenoceptor stimulations in rat myocardium. Anesthesiology. 1997;86:147–59.PubMedCrossRefGoogle Scholar
  139. 139.
    Gueugniaud PY, Hanouz JL, Martino JM, Lecarpentier Y, Coriat P, Riou B. Interaction of halogenated anesthetics with dobutamine in rat myocardium. Anesthesiology. 1999;90:1663–70.PubMedCrossRefGoogle Scholar
  140. 140.
    Hanouz JL, Vivien B, Gueugniaud PY, Lecarpentier Y, Coriat P, Riou B. Interaction of isoflurane and sevoflurane with alpha- and beta-adrenoceptor stimulations in rat myocardium. Anesthesiology. 1998;88:1249–58.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2009

Authors and Affiliations

  1. 1.Department of Anesthesiology, Graduate School of MedicineGunma UniversityMaebashiJapan

Personalised recommendations