Journal of Anesthesia

, 22:475 | Cite as

Peroxynitrite affects lidocaine by acting on membrane-constituting lipids

  • Takahiro Ueno
  • Maki Mizogami
  • Ko Takakura
  • Hironori Tsuchiya
Short Communication

Abstract

Inflammation frequently decreases local anesthetic effects, especially in dental anesthesia in patients with pulpitis and periodontitis. The pharmacokinetics and the mode of action of local anesthetics are closely associated with the hydrophobic interactions between these drugs and lipid bilayers that change the membrane physicochemical property, fluidity. A lipid oxidant, peroxynitrite, is produced by inflammatory cells, and it may act on nerve cell membranes and affect anesthetic efficacy. With respect to this speculated action, we addressed whether peroxynitrite acted on membrane-constituting lipids to decrease the membrane interactivity of lidocaine. Membrane fluidity changes were determined by measuring the fluorescence polarization of liposomes prepared with different phospholipids. Peroxynitrite (0.1–50 μM) rigidified nerve-cell model membranes consisting of unsaturated phospholipids, as well as liposomal membranes consisting of 1,2-dioleoylphosphatidylcholine and 1-stearoyl-2-arachidonylphosphatidylcholine, but peroxynitrite did not rigidify 1, 2-dipalmitoylphosphatidylcholine liposomal membranes. The pretreatment of nerve-cell model membranes with peroxynitrite (0.1–50 μM) decreased the membrane-fluidizing effects of lidocaine (5.0 mg·ml−1) to 63%–86% of the control (not treated with peroxynitrite) depending on the peroxynitrite concentration. As one of the mechanisms of the local anesthetic failure associated with inflammation, inflammatory peroxynitrite may affect local anesthesia by acting on membrane-constituting unsaturated phospholipids.

Key words

Peroxynitrite Lidocaine Membrane lipids Fluidity change Anesthetic failure 

References

  1. 1.
    Frangopol PT, Mihăilescu D. Interactions of some local anesthetics and alcohols with membranes. Colloids Surf B Biointerfaces. 2001;22:3–22.PubMedCrossRefGoogle Scholar
  2. 2.
    Strichartz GR, Sanchez V, Arthur GR, Chafetz R, Martin D. Fundamental properties of local anesthetics. II. Measured octanol: buffer partition coefficients and pKa values of clinically used drugs. Anesth Analg. 1990;71:158–170.PubMedCrossRefGoogle Scholar
  3. 3.
    Meechan JG. How to overcome failed local anaesthesia. Br Dent J. 1999;186:15–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Potočnik I, Bajrović F. Failure of inferior alveolar nerve block in endodontics. Endod Dent Traumatol. 1999;15:247–251.PubMedCrossRefGoogle Scholar
  5. 5.
    Yagiela JA, Neidle EA, Dowd FJ. Pharmacology and therapeutics for dentistry. St. Louis: Mosby; 1998. p. 217–234.Google Scholar
  6. 6.
    Becker DE, Reed KL. Essentials of local anesthetic pharmacology. Anesth Prog. 2006;53:98–109.PubMedCrossRefGoogle Scholar
  7. 7.
    Punnia-Moorthy A. Buffering capacity of normal and inflamed tissues following the injection of local anaesthetic solutions. Br J Anaesth. 1988;61:154–159.PubMedCrossRefGoogle Scholar
  8. 8.
    Tsuchiya H, Mizogami M, Ueno T, Takakura K. Interaction of local anaesthetics with lipid membranes under inflammatory acidic conditions. Inflammopharmacology. 2007;15:164–170.PubMedCrossRefGoogle Scholar
  9. 9.
    Ueno T, Mizogami M, Takakura K, Tsuchiya H. Membrane effect of lidocaine is inhibited by interaction with peroxynitrite. J Anesth. 2008;22:96–99.PubMedCrossRefGoogle Scholar
  10. 10.
    Ródenas J, Mitjavila MT, Carbonell T. Simultaneous generation of nitric oxide and superoxide by inflammatory cells in rats. Free Radic Biol Med. 1995;18:869–875.PubMedCrossRefGoogle Scholar
  11. 11.
    Takakura K, Mizogami M, Ono Y, Ooshima K, Muramatsu I. Decrease of the inhibitory effect of lidocaine on trigeminal nerve response by the inflammatory oxidant peroxynitrite. Can J Anaesth. 2005;52:439–440.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsuchiya H. Biphasic effects of acetaldehyde-biogenic amine condensation products on membrane fluidity. J Pharm Pharmacol. 2001;53:121–127.PubMedCrossRefGoogle Scholar
  13. 13.
    Deliconstantinos G, Villiotou V. Gas phase oxidants of cigarette smoke increase nitric oxide synthase and xanthine oxidase activities of rabbit brain synaptosomes. Neurochem Res. 2000;25:769–774.PubMedCrossRefGoogle Scholar
  14. 14.
    TaffiR, Vignini A, Lanciotti C, Luconi R, Nanetti L, Mazzanti L, Provinciali L, Silvestrini M, Bartolini M. Platelet membrane fluidity and peroxynitrite levels in migraine patients during headache-free periods. Cephalalgia. 2005;25:353–358.CrossRefGoogle Scholar
  15. 15.
    Muriel P, Sandoval G. Nitric oxide and peroxynitrite anion modulate liver plasma membrane fluidity and Na+/K+-ATPase activity. Nitric Oxide. 2000;4:333–342.PubMedCrossRefGoogle Scholar
  16. 16.
    Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991;288: 481–487.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsuchiya H. Structure-specific membrane-fluidizing effect of propofol. Clin Exp Pharmacol Physiol. 2001;28:292–299.PubMedCrossRefGoogle Scholar
  18. 18.
    de Lima VR, Morfim MP, Teixeira A, Creczynski-Pasa TB. Relationship between the action of reactive oxygen and nitrogen species on bilayer membranes and antioxidants. Chem Phys Lipids. 2004;132:197–208.PubMedCrossRefGoogle Scholar
  19. 19.
    Wagner BA, Buettner GR, Burns CP. Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry. 1994;33:4449–4453.PubMedCrossRefGoogle Scholar
  20. 20.
    Yomura Y, Shoji Y, Asai D, Murakami E, Ueno S, Nakashima H. Direct, real-time, simultaneous monitoring of intravitreal nitric oxide and oxygen in endotoxin-induced uveitis in rabbits. Life Sci. 2007;80:1449–1457.PubMedCrossRefGoogle Scholar
  21. 21.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87:1620–1624.PubMedCrossRefGoogle Scholar
  22. 22.
    Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992;298:446–451.PubMedCrossRefGoogle Scholar
  23. 23.
    Jastak JT, Yagiela JA, Donaldson D. Local anesthesia of the oral cavity. Philadelphia: WB Saunders; 1995. p. 87–285.Google Scholar
  24. 24.
    van der Veen RC, Hinton DR, Incardonna F, Hofman FM. Extensive peroxynitrite activity during progressive stages of central nervous system inflammation. J Neuroimmunol. 1997;77: 1–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Mapp PI, Klocke R, Walsh DA, Chana JK, Stevens CR, Gallagher PJ, Blake DR. Localization of 3-nitrotyrosine to rheumatoid and normal synovium. Arthritis Rheum. 2001;44:1534–1539.PubMedCrossRefGoogle Scholar
  26. 26.
    Gold MS, Flake NM. Inflammation-mediated hyperexcitability of sensory neurons. Neurosignals. 2005;14:147–157.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang JG, Strong JA, Xie W, Zhang JM. Local inflammation in rat dorsal root ganglion alters excitability and ion currents in small diameter sensory neurons. Anesthesiology. 2007;107:322–332.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2008

Authors and Affiliations

  • Takahiro Ueno
    • 1
  • Maki Mizogami
    • 1
  • Ko Takakura
    • 1
  • Hironori Tsuchiya
    • 2
  1. 1.Department of AnesthesiologyAsahi University School of DentistryGifuJapan
  2. 2.Department of Dental Basic Education, Building 3Asahi University School of DentistryGifuJapan

Personalised recommendations