Advertisement

Journal of Anesthesia

, Volume 22, Issue 3, pp 263–277 | Cite as

Anesthetics, immune cells, and immune responses

  • Shin Kurosawa
  • Masato Kato
Invited Review Article

Abstract

General anesthesia accompanied by surgical stress is considered to suppress immunity, presumably by directly affecting the immune system or activating the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Along with stress such as surgery, blood transfusion, hypothermia, hyperglycemia, and postoperative pain, anesthetics per se are associated with suppressed immunity during perioperative periods because every anesthetic has direct suppressive effects on cellular and neurohumoral immunity through influencing the functions of immunocompetent cells and inflammatory mediator gene expression and secretion. Particularly in cancer patients, immunosuppression attributable to anesthetics, such as the dysfunction of natural killer cells and lymphocytes, may accelerate the growth and metastases of residual malignant cells, thereby worsening prognoses. Alternatively, the anti-inflammatory effects of anesthetics may be beneficial in distinct situations involving ischemia and reperfusion injury or the systemic inflammatory response syndrome (SIRS). Clinical anesthesiologists should select anesthetics and choose anesthetic methods with careful consideration of the clinical situation and the immune status of critically ill patients, in regard to long-term mortality, morbidity, and the optimal prognosis.

Key words

Anesthetics Immunosuppression Immune cells Prognosis Hypothalamic-pituitary-adrenal axis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graham EA. The influence of ether and ether anesthesia on bacteriolysis, agglutination and phagocytosis. J Infect Dis. 1911;8:147.Google Scholar
  2. 2.
    Gaylord HR, Simpson BT. Effect of certain anaesthetics and loss of blood upon growth of transplanted mouse cancer. J Cancer Res. 1916;1:379–382.Google Scholar
  3. 3.
    Homburger JA, Meiler SE. Anesthesia drugs, immunity, and long-term outcome. Curr Opin Anaesthesiol. 2006;19:423–428.PubMedCrossRefGoogle Scholar
  4. 4.
    Vallejo R, Hord ED, Barna SA, Santiago-Palma J, Ahmed S. Perioperative immunosuppression in cancer patients. J Environ Pathol Toxicol Oncol. 2003;22:139–146.PubMedCrossRefGoogle Scholar
  5. 5.
    Chrousos GP. Seminars in medicine of the Beth Israel Hospital, Boston: the hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med. 1995;332:1351–1362.PubMedCrossRefGoogle Scholar
  6. 6.
    Kennedy BC, Hall GM. Neuroendocrine and inflammatory aspects of surgery: do they affect outcome? Acta Anaesthesiol Belg. 1999;50:205–209.PubMedGoogle Scholar
  7. 7.
    Elenkov IJ, Chrousos GP. Stress hormones, proinflammatory and anti-inflammatory cytokines, and autoimmunity. Ann NY Acad Sci. 2002;966:290–303.PubMedGoogle Scholar
  8. 8.
    Younes RN, Rogatko A, Brennan MF. The influence of intraoperative hypotension and perioperative blood transfusion on disease-free survival in patients with complete resection of colorectal liver metastases. Ann Surg. 1991;214:107–113.PubMedCrossRefGoogle Scholar
  9. 9.
    Rosen CB, Nagorney DM, Taswell HF, Helgeson SL, Ilstrup DM, van Heerden J, Adson MA. Perioperative blood transfusion and determinants of survival after liver resection for metastatic colorectal carcinoma. Ann Surg. 1992;216:493–504.PubMedCrossRefGoogle Scholar
  10. 10.
    Tatter PI. Perioperative blood transfusion and colorectal cancer: a review. J Surg Oncol. 1988;39:197–200.CrossRefGoogle Scholar
  11. 11.
    Rassias AJ, Marrin CAS, Arruda J, Whalen PK, Beach M, Yeager MP. Insulin infusion improves neutrophil function in diabetic cardiac surgery patients. Anesth Analg. 1999;88:1011–1016.PubMedCrossRefGoogle Scholar
  12. 12.
    Rassias AJ, Givan AL, Marrin CAS, Whalen K, Pahl J, Yearger MP. Insulin increases neutrophil count and phagocytosis capacity after cardiac surgery. Anesth Analg. 2002;94:1113–1119.PubMedCrossRefGoogle Scholar
  13. 13.
    Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med. 1996;334:1209–1215.PubMedCrossRefGoogle Scholar
  14. 14.
    Beilin B, Shavit Y, Razumovsky J, Wolloch Y, Zeidel A, Bessler H. Effect of mild perioperative hypothermia on cellular immune responses. Anesthesiology. 1998;89:1133–1140.PubMedCrossRefGoogle Scholar
  15. 15.
    Sheffield CW, Sessler DI, Hunt TK. Mild hypothermia during isoflurance anesthesia decreases resistance to E. coli dermal infection in guinea pigs. Acta Anaesthesiol Scand. 1994;38:201–205.PubMedCrossRefGoogle Scholar
  16. 16.
    Beilin B, Shavit Y, Trabekin E, Mordashev B, Mayburd E, Zeidel A, Bessler H. The effects of postoperative pain management on immune response to surgery. Anesth Analg. 2003;97:822–827.PubMedCrossRefGoogle Scholar
  17. 17.
    Volk T, Schenk M, Voigt K, Tohtz S, Putzier M, Kox WJ. Postoperative epidural anesthesia preserves lymphocyte, but not monocyte, immune function after major spine surgery. Anesth Analg. 2004;98:1086–1092.PubMedCrossRefGoogle Scholar
  18. 18.
    Yokoyama M, Itano Y, Mizobuchi S. The effects of epidural block on the distribution of lymphocyte subsets and natural-killer cell activity in patients with and without pain. Anesth Analg. 2001;92:463–469.PubMedCrossRefGoogle Scholar
  19. 19.
    Kehlet H. Manipulation of the metabolic response in clinical practice. World J Surg. 2000;24:690–695.PubMedCrossRefGoogle Scholar
  20. 20.
    Black CT, Hennessey PJ, Andrassy RJ. Short-term hyperglycemia depresses immunity through nonenzymatic glycosylation of circulating immunoglobulin. J Trauma. 1990;30:830–833.PubMedGoogle Scholar
  21. 21.
    Wilson RM. Neutrophil function in diabetes. Diabetic Med. 1986;3:509–512.PubMedGoogle Scholar
  22. 22.
    Wilson RM, Tomlinson DR, Reeves WG. Neutrophil sorbitol production impairs oxidative killing in diabetes. Diabetic Med. 1987;4:37–40.PubMedGoogle Scholar
  23. 23.
    Kirkley SA, Cowles J, Pellegrini VD Jr, Harris CM, Boyd AD, Blumberg N. Cytokine secretion after allogeneic or autologous blood transfusion (letter). Lancet. 1995;345:527.PubMedCrossRefGoogle Scholar
  24. 24.
    Kirkley S, Cowles J, Pellegrini V, Harris C, Boyd A, Blumberg N. Increased T helper 2 (TH2) type cytokine secretion found in surgical patients receiving allogeneic blood. Transfusion. 1995;35(Suppl):44.Google Scholar
  25. 25.
    Kelbel I, Weiss M. Anesthetics and immune function. Curr Opin Anaesthesiol. 2001;14:685–691.PubMedCrossRefGoogle Scholar
  26. 26.
    Benjamini E, Coico R, Sunshine G. Elements of innate and acquired immunity. In: Benjamini E, Coico R, Sunshine G, editors. Immunology—a short course. New York: Wiley-Liss; 2000, p. 17–39.Google Scholar
  27. 27.
    Benjamini E, Coico R, Sunshine G. Biology of the T lymphocyte. In: Benjamini E, Coico R, Sunshine G, editors. Immunology—a short course. New York: Wiley-Liss; 2000. p. 169–185.Google Scholar
  28. 28.
    Weiss A. T-lymphocyte activation. In: Paul WE, editor. Fundamental immunology. Philadelphia: Lippincott-Raven; 1999. p. 411–448.Google Scholar
  29. 29.
    Mack VE, McCarter MD, Naama HA, Calvano SE, Daly JM. Dominance of T helper 2-type cytokines after severe injury. Arch Surg. 1996;131:1303–1309.PubMedGoogle Scholar
  30. 30.
    Powrie F, Coffman RL. Cytokine regulation of T cell function: potential for therapeutic intervention. Immunol Today. 1993;14:270–274.PubMedCrossRefGoogle Scholar
  31. 31.
    Yokoyama WM. Natural killer cells. In: Paul WE, editor. Fundamental immunology. Philadelphia: Lippincott-Raven; 1999. p. 575–604.Google Scholar
  32. 32.
    Schreiber H. Tumor immunology. In: Paul WE, editor. Fundamental immunology. Philadelphia: Lippincott-Raven; 1999. p. 1237–1270.Google Scholar
  33. 33.
    Kurosawa S, Matsuzaki G, Harada M, Ando Takashi, Nomoto K. Early appearance and activation of natural killer cells in tumor-infiltrating lymphoid cells during tumor development. Eur J Immunol. 1993;23:1029–1033.PubMedCrossRefGoogle Scholar
  34. 34.
    Kurosawa S, Harada M, Matsuzaki G, Shinomiya H, Terao H, Kobayashi N, Nomoto K. Early appearing tumour-infiltrating natural killer cells play a crucial role in the generation of antitumour T lymphocytes. Immunology. 1995;85:338–346.PubMedGoogle Scholar
  35. 35.
    Kurosawa S, Harada M, Shinomiya Y, Terao H, Nomoto K. The concurrent administration of OK432 augments the antitumor vaccination effect with tumor cells by sustaining locally infiltrating natural killer cells. Cancer Immunol Immunother. 1996;43:31–38.PubMedCrossRefGoogle Scholar
  36. 36.
    Kos FJ, Engelman EG. Immune regulation: a critical link between NK cells and CTLs. Immunol Today. 1996;17:174–176.PubMedCrossRefGoogle Scholar
  37. 37.
    Trinchieri G. Biology of natural killer cells. In: Dixon FJ, editor. Advances in immunology. San Diego: Academic; 1989. p. 187–376.Google Scholar
  38. 38.
    Peritt D, Robertson S, Gri G, Showe L, Aste-Amezaga M, Trinchieri G. Cutting edge: differentiation of human NK cells into NK1 and NK2 subsets. J Immunol. 1998;161:5821–5824.PubMedGoogle Scholar
  39. 39.
    Seo N, Tokura Y. Downregulation of innate and acquired antitumor immunity by bystander gammadelta and alphabeta T lymphocytes with Th2 or Tr1 cytokine profiles. J Interferon Cytokine Res. 1999;19:555–561.PubMedCrossRefGoogle Scholar
  40. 40.
    Ben-Eliyahu S, Page GG, Yirmiya R, Shakhar G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int J Cancer. 1999;80:880–888.PubMedCrossRefGoogle Scholar
  41. 41.
    Nathan C. Neutrophils and immunity: challenges and opportunities. Nature Rev Immunol. 2006;6:173–182.CrossRefGoogle Scholar
  42. 42.
    Appelberg R. Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol. 2006;16:87–92.Google Scholar
  43. 43.
    Weiss SJ. Tissue destruction by neutrophils. N Engl J Med. 1989;320:365–376.PubMedGoogle Scholar
  44. 44.
    Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004;61:481–497.PubMedCrossRefGoogle Scholar
  45. 45.
    Welch WD. Halothane reversibly inhibits human neutrophil bacterial killing. Anesthesiology. 1981;55:650–654.PubMedGoogle Scholar
  46. 46.
    Nakagawara M, Takeshige K, Takamatsu J, Takahashi S, Yoshitake J, Minakami S. Inhibition of superoxide production and Ca2+ mobilization in human neutrophils by halothane, enflurane, and isoflurane. Anesthesiology. 1986;64:4–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Fröhlich D, Rothe G, Schwall B, Schmid P, Schmitz G, Taeger K, Hobbhahn J. Effects of volatile anaesthetics on human neutrophil oxidative response to the bacterial peptide FMLP. Br J Anaesth. 1997;78:718–723.PubMedGoogle Scholar
  48. 48.
    Guochang H, Salem MR, Crystal GJ. Isoflurane prevents platelets from enhancing neutrophil-induced coronary endothelial dysfunction. Anesth Analg. 2005;101:1261–1268.CrossRefGoogle Scholar
  49. 49.
    Fan H, Sun B, Gu Q, Lafond-Walker A, Cao S, Becker LC. Oxygen radicals trigger activation of NF-κ B and AP-1 and upregulation of ICAM-1 in reperfused canine heart. Am J Physiol. 2002;282:H1778–H1786.Google Scholar
  50. 50.
    Hu G, Vinten-Johansen J, Salem MR, Zhao ZQ, Crystal GJ. Isoflurane inhibits neutrophil-endothelium interactions in the coronary circulation: lack of role for adenosine triphosphate-sensitive potassium channels. Anesth Analg. 2002;94:849–856.PubMedCrossRefGoogle Scholar
  51. 51.
    Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res. 1999;43:860–878.PubMedCrossRefGoogle Scholar
  52. 52.
    De Hert SG, Turani F, Mathur S, Stowe DF. Cardioprotection with volatile anesthetics: Mechanisms and clinical implications. Anesth Analg. 2005;100:1584–1593.PubMedCrossRefGoogle Scholar
  53. 53.
    Kevin LG, Novalija E, Stowe DF. Reactive oxygen species as mediators of cardiac injury and protection: the relevance to anesthesia practice. Anesth Analg. 2005;101:1275–1287.PubMedCrossRefGoogle Scholar
  54. 54.
    Tait AR, Davidson BA, Johnson KJ, Remick DG, Knight PR. Halothane inhibits the intraalveolar recruitment of neutrophils, lymphocytes, and macrophages in response to influenza virus infection in mice. Anesth Analg. 1993;76:1106–1113.PubMedCrossRefGoogle Scholar
  55. 55.
    Kotani N, Hashimoto H, Sessler DI, Kikuchi A, Suzuki A, Takahashi S, et al. Intraoperative modulation of alveolar macrophage function during isoflurane and propofol anesthesia. Anesthesiology. 1998;89:1125–1132.PubMedCrossRefGoogle Scholar
  56. 56.
    Boost KA, Flondor M, Hofstetter C, Platacis I, Stegewerth K, Hoegl S, et al. The beta-adrenoceptor antagonist propranolol counteracts anti-inflammatory effects of isoflurane in rat endotoxemia. Acta Anaesthesiol Scand. 2007;51:900–908.PubMedCrossRefGoogle Scholar
  57. 57.
    Tschaikowsky K, Ritter J, Schröppel K, Kühn M. Volatile anesthetics differentially affect immunostimulated expression of inducible nitric oxide synthase: role of intracellular calcium. Anesthesiology. 2000;92:1093–1102.PubMedCrossRefGoogle Scholar
  58. 58.
    Wallace JL. Nitric oxide as a regulator of inflammatory process. Mem Inst Oswaldo Cruz. 2005;100:5–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Chello M, Mastroroberto P, Marchese A, Maltese G, Santangelo E, Amantea B. Nitric oxide inhibits neutrophil adhesion during experimental extracorporeal circulation. Anesthesiology. 1998;89:443–448.PubMedCrossRefGoogle Scholar
  60. 60.
    Reutershan J, Chang D, Hayes JK, Ley K. Protective effects of isoflurane pretreatment in endotoxin-induced lung injury. Anesthesiology. 2006;104:511–517.PubMedCrossRefGoogle Scholar
  61. 61.
    Fuentes JM, Talamini MA, Fulton WB, Hanly EJ, Aurora AR, Demaio A. Genaral anesthesia delays the inflammatory response and increases survival for mice with endotoxic shock. Clin Vaccine Immunol. 2006;13:281–288.PubMedCrossRefGoogle Scholar
  62. 62.
    Hofstetter C, Flondor M, Boost KA, Koehler P, Bosmann M, Pfeilschifter J, Zwissler B, Mühl H. A brief exposure to isoflurane (50 s) significantly impacts on plasma cytokine levels in endotoxemic rats. Int Immunopharmacol. 2005;5:1519–1522.PubMedCrossRefGoogle Scholar
  63. 63.
    Hofstetter C, Boost KA, Flondor M, Basagan-Mogol E, Betz C, Homann M, Mühl H, Pfeilschifter J, Zwissler B. Anti-inflammatory effects of sevoflurane and mild hypothermia in endotoxemic rats. Acta Anaesthesiol Scand. 2007;51:893–899.PubMedCrossRefGoogle Scholar
  64. 64.
    Tarter PI, Steinberg B, Barron DM, Martinelli G. The prognostic significance of natural killer cytotoxicity in patients with colorectal cancer. Arch Surg. 1987;122:1264–1268.Google Scholar
  65. 65.
    Schantz SP, Brown BW, Lisa E, Taylor DL, Beddingfield N. Evidence for the role of natural immunity in the control of metastatic spread of head and neck cancer. Cancer Immunol Immunother. 1987;25:141–145.PubMedCrossRefGoogle Scholar
  66. 66.
    Fujiwara T, Yamaguchi Y. Autologous tumor killing activity as a prognostic factor in primary resected nonsmall cell carcinoma of the lung. Cancer. 1997;79:474–481.CrossRefGoogle Scholar
  67. 67.
    Woods GM, Griffiths DM. Reversible inhibition of natural killer cell activity by volatile anaesthetic agents in vitro. Br J Anaesth. 1986;58:535–539.PubMedCrossRefGoogle Scholar
  68. 68.
    Markovic SN, Knight PR, Murasko DM. Inhibition of interferon stimulation of natural killer cell activity in mice anesthetized with halothane or isoflurane. Anesthesiology. 1993;78:700–706.PubMedCrossRefGoogle Scholar
  69. 69.
    Melamed R, Bar-Yosef S, Shakhar G, Shakhar K, Ben-Eliyahu S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg. 2003;97:1331–1339.PubMedCrossRefGoogle Scholar
  70. 70.
    Markovic SN, Murasko DM. Anesthesia inhibits interferon-induced natural killer cell cytotoxicity via induction of CD8+ suppressor cells. Cell Immunol. 1993;151:474–480.PubMedCrossRefGoogle Scholar
  71. 71.
    Tønnesen E, Brinkløv MM, Christensen NJ, Olesen AS, Madsen T. Natural killer cell activity and lymphocyte function during and after coronary artery bypass grafting in relation to the endocrine stress response. Anesthesiology. 1987;67:526–533.PubMedCrossRefGoogle Scholar
  72. 72.
    Salo M. Effects of anaesthesia and surgery on the immune response. In: Watkins J, Salo M, editors. Trauma, stress and immunity in anaesthesia and surgery. London: Butterworth Scientific; 1982. p. 211–253.Google Scholar
  73. 73.
    Salo M, Eskola J, Nikoskelainen J. T-and B-lymphocyte function in anesthetics. Acta Anaesthesiol Scand. 1984;28:292–295.PubMedGoogle Scholar
  74. 74.
    Bruce DL. Halothane inhibition of phytohemagglutinin-induced transformation of lymphocytes. Anesthesiology. 1972;36:201–205.PubMedCrossRefGoogle Scholar
  75. 75.
    Bruce DL. Halothane inhibition of RNA and protein synthesis of PHA-treated human lymphocytes. Anesthesiology. 1975;42:11–14.PubMedCrossRefGoogle Scholar
  76. 76.
    Ferrero E, Ferrero ME, Marni A, Zocchi MR, Stella L, Rugarli C, Tiengo M. In vitro effects of halothane on lymphocytes. Eur J Anaesthesiol. 1986;3:321–330.PubMedGoogle Scholar
  77. 77.
    Hamra JG, Yaksh TL. Halothane inhibits T cell proliferation and interleukin-2 receptor expression in rats. Immunopharmacol Immunotoxicol. 1996;18:323–336.PubMedCrossRefGoogle Scholar
  78. 78.
    Stevenson GM, Hall SC, Miller PJ, Alvord G, Leventhal JB, Seleny F, Stevenson HC. The effects of anesthetic agents on human immune system function. I. Design of a system to deliver inhalational anesthetic agents to leukocytes cultures in vitro. J Immunol Methods. 1986;88:277–283.PubMedCrossRefGoogle Scholar
  79. 79.
    Mitsuhata H, Shimizu R, Yokoyama MM. Suppressive effects of volatile anesthetics on cytokine release in human peripheral blood mononuclear cells. Int J Immunopharmacol. 1995;17:529–534.PubMedCrossRefGoogle Scholar
  80. 80.
    Matsuoka H, Kurosawa S, Horinouchi T, Kato M, Hashimoto Y. Inhalation anesthetics induce apoptosis in normal peripheral lymphocytes in vitro. Anesthesiology. 2001;95:1467–1472.PubMedCrossRefGoogle Scholar
  81. 81.
    Loop T, Dovi-Akue D, Frick M, Roesslein M, Egger L, Humar M, Hoetzel A, Schmidt R, Borner C, Pahl H, Geiger KK, Pannen BHJ. Volatile anesthetics induce caspase-dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology. 2005;102:1147–1157.PubMedCrossRefGoogle Scholar
  82. 82.
    Green DR. Overview: apoptotic signaling pathway in the immune system. Immunol Rev. 2003;193:5–9.PubMedCrossRefGoogle Scholar
  83. 83.
    M’Bemba-Meka P, Lemieux N, Chakrabarti SK. Role of oxidative stress, mitochondrial membrane potential, and calcium homeostasis in nickel subsulfide-induced human lymphocyte death in vitro. Sci Total Environ. 2006;369:21–34.PubMedCrossRefGoogle Scholar
  84. 84.
    Le SB, Hailer MK, Buhrow S, Wang Q, Flatten K, Pediaditakis P, Bible KC, Lewis LD, Sausville EA, Pang YP, Ames MM, Lemasters JJ, Holmuhamedov EL, Kaufmann SH. Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem. 2007;282:8860–8872.PubMedCrossRefGoogle Scholar
  85. 85.
    Kasahara Y, Iwai K, Yachie A, Ohta K, Konno A, Seki H, Miyazaki T, Taniguchi N. Involvement of reactive oxygen intermediates in spontaneous and CD95 (Fas/APO-1)-mediated apoptosis of neutrophils. Blood. 1997;89:1748–1753.PubMedGoogle Scholar
  86. 86.
    Gwinn M, Vallyathan V. Respiration burst: role in signal transduction in alveolar macrophages. J Toxicol Environ Health Part B. 2006;9:27–39.CrossRefGoogle Scholar
  87. 87.
    Loop T, Scheiermann P, Doviakue D, Musshoff F, Humar M, Roesslein M, Hoetzel A, Schmidt R, Madea B, Geiger K, Pahl H, Pannen BH. Sevoflurane inhibits phorbol-myristate-acetate-induced activator protein-1 activation in human T lymphocytes in vitro: potential role of the p38-stress kinase pathway. Anesthesiology. 2004;101:710–721.PubMedCrossRefGoogle Scholar
  88. 88.
    De Hert SG, Turani F, Mathur S, Stowe DF. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg. 2005;100:1584–1593.PubMedCrossRefGoogle Scholar
  89. 89.
    Zaugg M, Schaub M. Signaling and cellular mechanisms in cardiac protection by ischemic and pharmacological preconditioning. J Muscle Res Cell Motil. 2003;24:219–249.PubMedCrossRefGoogle Scholar
  90. 90.
    Aarts L, van der Hee R, Dekker I, de Jong J, Langermeiger H, Bast A. The widely used anesthetic agent propofol can replace α-tocopherol as an antioxidant. FEBS Lett. 1995;357:83–85.PubMedCrossRefGoogle Scholar
  91. 91.
    Heine J, Leuwer M, Scheinichen D, Arseniev L, Jaeger K, Piepenbrock S. Flow cytometry evaluation of the in vitro influence of four i.v. anaesthetics on respiratory burst of neutrophils. Br J Anaesth. 1996;77:387–392.PubMedGoogle Scholar
  92. 92.
    Mikawa K, Akamatsu H, Nishina K, Shiga M, Maekawa N, Obara H, Niwa Y. Propofol inhibits human neutrophil functions. Anesth Analg. 1998;87:695–700.PubMedCrossRefGoogle Scholar
  93. 93.
    Heller A, Heller S, Blecken S, Urbaschek R, Koch T. Effects of intravenous anesthetics on bacterial elimination in human blood in vitro. Acta Anaesthesiol Scand. 1998;42:518–526.PubMedGoogle Scholar
  94. 94.
    Krumholz W, Endrass J, Hempelmann G. Propofol inhibits phagocytosis and killing of Staphylococcus aureus and Escherichia coli by polymorphonuclear leukocytes in vitro. Can J Anaesth. 1994;41:446–449.PubMedGoogle Scholar
  95. 95.
    Heine J, Jaeger K, Osthaus A, Weingaertner N, Munte S, Piepenbrock S, Leuwer M. Anaesthesia with propofol decreases FMLP-induced neutrophil respiratory burst but not phagocytosis compared with isoflurane. Br J Anaesth. 2000;85:424–430.PubMedGoogle Scholar
  96. 96.
    Davidson JA, Boom SJ, Pearsall FJ, Zhang P, Ramasay G. Comparison of the effects of four i.v. anaesthetic agents on polymorphonuclear leukocyte function. Br J Anaesth. 1995;74:315–318.PubMedCrossRefGoogle Scholar
  97. 97.
    O’Donnell NG, McSharry CP, Wilkinson PC, Asbury AJ. Comparison of the inhibitory effects of propofol, thiopentone and midazolam on neutrophil polarization in vitro in the presence or absence of human serum albumin. Br J Anaesth. 1992;69:70–74.PubMedCrossRefGoogle Scholar
  98. 98.
    Huettemann E, Jung A, Vogelsang H, Hou N, Sakka SG. Effects of propofol vs methohexital on neutrophil function and immune status in critically ill patients. J Anesth. 2006;20:86–91.PubMedCrossRefGoogle Scholar
  99. 99.
    Galley HF, Dubbels AM, Webster NR. The effects of midazolam and propofol on interleukin-8 from human polymorphonuclear leukocytes. Anesth Analg. 1998;86:1289–1293.PubMedCrossRefGoogle Scholar
  100. 100.
    Nagata T, Kansha M, Irita K, Takahashi S. Propofol inhibits FMLP-stimulated phosphorylation of p42 mitogen-activated protein kinase and chemotaxis in human neutrophils. Br J Anaesth. 2001;86:853–858.PubMedCrossRefGoogle Scholar
  101. 101.
    Wu GJ, Tai YT, Chen TL, Lin LL, Ueng YF, Chen RM. Propofol specifically inhibits mitochondrial membrane potential but not complex I NADH dehydrogenase activity, thereby reducing cellular ATP biosynthesis and migration of macrophages. Ann NY Acad Sci. 2005;1042:168–176.PubMedCrossRefGoogle Scholar
  102. 102.
    Chen RM, Wu CH, Chang HC, Wu GJ, Lin YL, Sheu JR, Chen TL. Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis. Anesthesiology. 2003;98:1178–1185.PubMedCrossRefGoogle Scholar
  103. 103.
    Chang H, Tsai SY, Chang Y, Chen TL, Chen RM. Therapeutic concentration of propofol protects mouse macrophages from nitric oxide-indiced cell death and apoptosis. Can J Anaesth. 2002;49:477–480.PubMedGoogle Scholar
  104. 104.
    Chen RM, Wu GJ, Tai YT, Sun WZ, Lin YL, Jean WC, Chen TL. Propofol reduces nitric oxide biosynthesis in lipopolysaccharide-activated macrophages by downregulating the expression of inducible nitric oxide synthase. Arch Toxicol. 2003;77:418–423.PubMedCrossRefGoogle Scholar
  105. 105.
    Chen RM, Chen TG, Chen TL, Lin LL, Chang CC, Chang HC, Wu CH. Anti-inflammatory and antioxidative effects of propofol on lipopolysaccharide-activated macrophages. Ann NY Acad Sci. 2005;1042:262–271.PubMedCrossRefGoogle Scholar
  106. 106.
    Rossano F, Tufano R, Cipollaro de L’Ero G, Servillo G, Baroni A, Tufano MA. Anesthetic agents induce human mononuclear leucocytes to release cytokines. Immunopharmacol Immunotoxicol. 1992;14:439–450.PubMedCrossRefGoogle Scholar
  107. 107.
    Brand JM, Frohn C, Luhm J, Kirchner H, Schmucker P. Early alterations in the number of circulating lymphocyte subpopulations and enhanced proinflammatory immune response during opioid-based general anesthesia. Shock. 2003;20:213–217.PubMedCrossRefGoogle Scholar
  108. 108.
    Pirttinkangas CO, Perttila J, Salo M. Propofol emulsion reduces proliferative responses of lymphocytes from intensive care patients. Intensive Care Med. 1993;19:299–302.CrossRefGoogle Scholar
  109. 109.
    Devlin EG, Clarke RS, Mirakhur RK, McNeill TA. Effect of four i.v. induction agents on T-lymphocyte proliferations to PHA in vitro. Br J Anaesth. 1994;73:315–317.PubMedCrossRefGoogle Scholar
  110. 110.
    Salo M, Pirttikangas CO, Pulkki K. Effects of propofol emulsion and thiopentone on T helper cell type-1/type-2 balance in vitro. Anesthesia. 1997;52:341–344.CrossRefGoogle Scholar
  111. 111.
    Song HK, Jeong DC. The effect of propofol on cytotoxicity and apoptosis of lipopolysaccharide-treated mononuclear cells and lymphocytes. Anesth Analg. 2004;98:1724–1728.PubMedCrossRefGoogle Scholar
  112. 112.
    Mozrzmas JW, Teisseyre A, Vittur F. Propofol blocks voltagegated potassium channels in human T lymphocytes. Biochem Pharmacol. 1996;52:843–849.CrossRefGoogle Scholar
  113. 113.
    Loop T, Liu Z, Humar M, Hoetzel A, Benzing A, Pahl HL, Geiger KK, Pannen BHJ. Thiopental inhibits the activation of nuclear factor κB. Anesthesiology. 2002;96:1202–1213.PubMedCrossRefGoogle Scholar
  114. 114.
    Larsen B, Hoff G, Wilhelm W, Buchinger H, Wanner G, Bauer M. Effect of intravenous anesthetics on spontaneous and endotoxin-stimulated cytokine response in cultured human whole blood. Anesthesiology. 1998;89:1218–1227.PubMedCrossRefGoogle Scholar
  115. 115.
    Carr DJ, Rogers TJ, Weber RJ. The relevance of opioid receptors on immunocompetence and immune homeostasis. Proc Soc Exp Biol Med. 1996;213:248–257.PubMedGoogle Scholar
  116. 116.
    Flores LR, Dretchen KL, Bayer BM. Potential role of the autonomic nervous system in the immunosuppressive effects of the acute morphine administration. Eur J Pharmacol. 1996;318:437–446.PubMedCrossRefGoogle Scholar
  117. 117.
    Freier DO, Fucks BA. A mechanism of action for morphine induced immunosuppression: corticosterone mediates morphine induced suppression of NK cell activity. J Pharmacol Exp Ther. 1993;270:1127–1133.Google Scholar
  118. 118.
    Bryanyt HU, Bernton EW, Kenner JR, Holaday JW. Role of adrenal cortical activation in the immunosuppressive effects of chronic morphine treatment. Endocrinology. 1991;128:3253–3258.Google Scholar
  119. 119.
    Mellon RD, Bayer BM. Evidence for central opioid receptors in the immunomodulatory effects of morphine: review of potential mechanisms of action. J Neuroimmunol. 1998;83:19–28.PubMedCrossRefGoogle Scholar
  120. 120.
    Smith EM. Opioid peptides in immune cells. Adv Exp Med Biol. 2003;521:51–68.PubMedGoogle Scholar
  121. 121.
    Sacerdote P, Limiroli E, Gaspani L. Experimental evidence for imunomodulatory effects of opioids. Adv Exp Med Biol. 2003;521:106–116.PubMedGoogle Scholar
  122. 122.
    Welters ID, Fimiani C, Bilfinger TV, Stefano GB. NF-κB, nitric oxide and opiate signaling. Med Hypotheses. 2000;54:263–268.PubMedCrossRefGoogle Scholar
  123. 123.
    Welters ID, Menzebach A, Goumon Y, Langefeld TW, Teschemacher H, Hempelmann G, Stefano BG. Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and mu(3) opiate receptor-dependent mechanism. J Neuroimmunol. 2000;111:139–145.PubMedCrossRefGoogle Scholar
  124. 124.
    Roy S, Ramakrishnan S, Loh HH, Lee NM. Chronic morphine treatment selectively suppresses macrophage colony formation in bone marrow. Eur J Pharmacol. 1991;195:359–363.PubMedCrossRefGoogle Scholar
  125. 125.
    Eisenstein TK, Hillburger ME. Opioid modulation of immune responses: effects on phagocyte and lymphoid cell population. J Neuroimmunol. 1998;83:36–44.PubMedCrossRefGoogle Scholar
  126. 126.
    Yeager MP, Colacchio TA, Yu CT, Hildebrandt L, Howell AL, Weiss J, Guyre PM. Morphine inhibits spontaneous and cytokine-enhanced natural killer cell cytotoxicity in volunteers. Anesthesiology. 1995;83:500–508.PubMedCrossRefGoogle Scholar
  127. 127.
    Bryant HU, Roudebush RE. Suppressive effects of morphine pellet implants on in vivo parameters of immune function. J Pharmacol Exp Ther. 1990;255:410–414.PubMedGoogle Scholar
  128. 128.
    Lysle DT, Coussons ME, Watts VJ, Bennett EH, Dykstra LA. Morphine-induced alterations of immune status: dose dependency, compartment specificity and antagonism by naltrexone. J Pharmacol Exp Ther. 1993;265:1071–1078.PubMedGoogle Scholar
  129. 129.
    Roy S, Charboneau RG, Barke RA. Morphine synergizes with lipopolysaccharide in a chronic endotoxemia model. J Neuroimmunol. 1999;95:107–114.PubMedCrossRefGoogle Scholar
  130. 130.
    Casalinuovo IA, Graziano R, Di Francesco P. Cytokine secretion by murine spleen cells after inactivated Candida albicans immunization. Efect of cocaine and morphine treatment. Immunopharmacol Immunotoxicol. 2000;22:35–48.PubMedCrossRefGoogle Scholar
  131. 131.
    Yin D, Mufson RA, Wang R, Shi Y. Fas-mediated cell death promoted by opioids. Nature. 1999;397:218.PubMedCrossRefGoogle Scholar
  132. 132.
    Jaeger K, Scheinichen D, Heine J, Andre M, Bund M, Piepenbrock S, Leuwer M. Remifentanil, fentanyl and alfentanil have no effect on the respiratory burst of neutrophils in vitro. Acta Anaesthesiol Scand. 1998;42:1110–1113.PubMedGoogle Scholar
  133. 133.
    Krumholz W, Endrass J, Hemplemann G. Inhibition of phagocytosis and killing of bacteria by anaesthetic agents in vitro. Br J Anaesth. 1995;75:66–70.PubMedGoogle Scholar
  134. 134.
    Shavit Y, Ben-Eliyahu S, Zeidel A, Beilin B. Effects of fentanyl on natural killer cell activity and on resistance to tumor metstasis in rats. Dose and timing study. Neuroimmunomodulation. 2004;11:255–260.PubMedCrossRefGoogle Scholar
  135. 135.
    Yeager MP, Procopio MA, DeLeo JA, Arruda JL, Hildebrandt L, Howell AL. Intravenous fentanyl increases natural killer cell cytotoxicity and circulating CD16+ lymphocytes in humans. Anesth Analg. 2002;94:94–99.PubMedCrossRefGoogle Scholar
  136. 136.
    Jacobs R, Karst M, Scheinichen D, Bevilacqua C, Schneider Udo, Heine J, Schedlowski M, Schmidt RE. Effects of fentanyl on cellular immune functions in man. Int J Immunopharmacol. 1999;21:445–454.PubMedCrossRefGoogle Scholar
  137. 137.
    Bilfinger TV, Fimiani C, Stefano GB. Morphine’s immunoregulatory actions are not shared by fentanyl. Int J Cardiol. 1998;64 (Suppl 1):S61–S66.PubMedCrossRefGoogle Scholar
  138. 138.
    Tønnesen E, Wahlgreen C. Influence of extradural and general anaesthesia on natural killer cell activity and lymphocyte subpopulations in patients undergoing hysterectomy. Br J Anaesth. 1988;60:500–507.PubMedCrossRefGoogle Scholar
  139. 139.
    Høgevold HE, Lyberg T, Kähler H, Haug E, Reikerås O. Changes in plasma IL-1-βTNF-α and IL-6 after total hip replacement surgery in general or regional anesthesia. Cytokine. 2000;12:1156–1159.PubMedCrossRefGoogle Scholar
  140. 140.
    Kehlet H. Manipulation of the metabolic response in clinical practice. World J Surg. 2000;24:690–695.PubMedCrossRefGoogle Scholar
  141. 141.
    Hole A, Unsgaard G. The effect of epidural and general anaesthesia on lymphocyte functions during and after major orthopaedic surgery. Acta Anaesthesiol Scand. 1983;27:135–141.PubMedGoogle Scholar
  142. 142.
    Whelan P, Morris PJ. Immunological responsiveness after transurethral resection of the prostate: general versus spinal anaesthetic. Clin Exp Immunol. 1982;48:611–618.PubMedGoogle Scholar
  143. 143.
    Wada H, Seki S, Takahahi T, Kawarabayashi N, Higuchi H, Habu Y, Sugahara S, Kazama T. Combined spinal and general anesthesia attenuates liver metastasis by preserving Th1/Th2 cytokine balance. Anesthesiology. 2007;106:499–506.PubMedCrossRefGoogle Scholar
  144. 144.
    Liu S, Carpenter RL, Neal JM. Epidural anesthesia and analgesia. Their role in postoperative outcome. Anesthesiology. 1995;82:1474–1506.PubMedCrossRefGoogle Scholar
  145. 145.
    Schneemilch CE, Ittenson A, Ansorge S, Hachenberg T, Bank U. Effect of 2 anesthetic techniques on the postoperative pro-inflammatory and anti-inflammatory cytokine response and cellular immune function to minor surgery. J Clin Anesth. 2005;17:517–527.PubMedCrossRefGoogle Scholar
  146. 146.
    Crozier TA, Müller JE, Quittkat D, Sydow M, Wuttke W, Kettler D. Effect of anaesthesia on the cytokine responses to abdominal surgery. Br J Anaesth. 1994;72:280–285.PubMedCrossRefGoogle Scholar
  147. 147.
    Pirttikangas CO, Salo M, Mansikka M, Grönroos J, Pulkki K, Peltola O. The influence of anaesthetic technique upon the immune response to hysterectomy. A comparison of propofol infusion and isoflurane. Anaesthesia. 1995;50:1056–1061.PubMedCrossRefGoogle Scholar
  148. 148.
    Kotani N, Hashimoto H, Sessler DI, Kikuchi A, Suzuki A, Takahashi S, Muraoka M, Matsuki A. Intraoperative modulation of alveolar macrophage function during isoflurane and propofol anesthesia. Anesthesiology. 1998;89:1125–1132.PubMedCrossRefGoogle Scholar
  149. 149.
    Inada T, Yamanouchi Y, Jomura S, Sakamoto S, Takahashi M, Kambara T, Shingu K. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia. 2004;59:954–959.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2008

Authors and Affiliations

  • Shin Kurosawa
    • 1
  • Masato Kato
    • 2
  1. 1.Department of Anesthesiology and Intensive Care MedicineTohoku University HospitalSendaiJapan
  2. 2.Department of Anesthesiology and Perioperative MedicineTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations