Advertisement

Journal of Gastroenterology

, Volume 53, Issue 7, pp 819–826 | Cite as

Mac-2 binding protein glycan isomer (M2BPGi) is a new serum biomarker for assessing liver fibrosis: more than a biomarker of liver fibrosis

  • Ken ShirabeEmail author
  • Yuki Bekki
  • Dolgormaa Gantumur
  • Kenichiro Araki
  • Norihiro Ishii
  • Atsushi Kuno
  • Hisashi Narimatsu
  • Masashi Mizokami
Review

Abstract

Assessing liver fibrosis is important for predicting the efficacy of antiviral therapy and patient prognosis. Liver biopsy is the gold standard for diagnosing liver fibrosis, despite its invasiveness and problematic diagnostic accuracy. Although noninvasive techniques to assess liver fibrosis are becoming important, reliable serum surrogate markers are not available. A glycoproteomics study aimed at identifying such markers discovered Mac 2-Binding Protein Gylcan Isomer (M2BPGi), which is a reliable marker for assessing liver fibrosis in patients with viral hepatitis and other fibrotic liver diseases such as primary biliary cholangitis, biliary atresia, autoimmune hepatitis, and nonalcoholic fatty liver disease. M2BPGi predicts the development of hepatocellular carcinoma (HCC) in patients infected with hepatitis B and C as well as the prognosis of liver cirrhosis in those with HCC after therapy. The unique features of M2BPGi are as follows: (1) cut-off values differ for the same stages of fibrosis according to the cause of fibrosis; and (2) M2BPGi levels rapidly decrease after patients achieve a sustained antiviral response to hepatitis C virus. These observations cannot be explained if M2BPGi levels reflect the amount of fibrotic tissue. Hepatic stellate cells (HSCs) secrete M2BPGi, which may serve as a messenger between HSCs and Kupffer cells via Mac-2 (galectin 3) that is expressed in Kupffer cells during fibrosis progression. Here we show that M2BPGi is a surrogate marker for assessing HSC activation. These findings may reveal the roles of HSCs in extrahepatic fibrotic disease progression.

Keywords

Liver fibrosis M2BPGi Hepatocarcinogenesis 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grants JP1504932 and 16K15606.

References

  1. 1.
    Mokdad AA, Lopez AD, Shahraz S, et al. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med. 2014;12:145.  https://doi.org/10.1186/s12916-014-0145-y (PMID 25242656).CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schuppan D, Afdahal NH. Liver cirrhosis. Lancet. 2008;371:838–51.CrossRefGoogle Scholar
  3. 3.
    Perz JF, Armstrong GL, Farrington LA, et al. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2003;38(Suppl 1):S38–53.Google Scholar
  4. 4.
    Karanjia RN, Crossey MM, Cox IJ, et al. Hepatic steatosis and fibrosis: non-invasive assessment. World J Gastroenterol. 2016;22:9880–97.CrossRefGoogle Scholar
  5. 5.
    Majumdar A, Kitson MT, Roberts SK. Treatment of hepatitis C in patients with cirrhosis: remaining challenges for direct-acting antiviral therapy. Drugs. 2015;75:823–34.CrossRefGoogle Scholar
  6. 6.
    Cammà C, Di Bona D, Schepis F, et al. Effect of peginterferon alfa-2a on liver histology in chronic hepatitis C: a meta-analysis of individual patient data. Hepatology. 2004;39:333–42.CrossRefGoogle Scholar
  7. 7.
    Rockey DC, Caldwell SH, Goodman ZD, et al. American Association for the study of liver diseases. Liver biopsy. Hepatology. 2009;49(3):1017–44.CrossRefGoogle Scholar
  8. 8.
    Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol. 2007;47:598–607.CrossRefGoogle Scholar
  9. 9.
    Cholongitas E, Senzolo M, Standish R, et al. A systematic review of the quality of liver biopsy specimens. Am J Clin Pathol. 2006;125:710–21.CrossRefGoogle Scholar
  10. 10.
    Colloredo G, Guido M, Sonzogni A, et al. Impact of liver biopsy size on histological evaluation of chronic viral hepatitis: the smaller the sample, the milder the disease. J Hepatol. 2003;39(2):239–44.CrossRefGoogle Scholar
  11. 11.
    Garcia-Tsao G, Friedman S, Iredale J. Now there are many (stages) where before there was one: in search of a pathophysiological classification of cirrhosis. Hepatology. 2010;51:1445–9.CrossRefGoogle Scholar
  12. 12.
    Germani G, Hytiroglou P, Fotiadu A, et al. Assessment of fibrosis and cirrhosis in liver biopsies: an update. Semin Liver Dis. 2011;31(1):82–90.CrossRefGoogle Scholar
  13. 13.
    Lurie Y, Webb M, Cytter-Kuint R, et al. Non-invasive diagnosis of liver fibrosis and cirrhosis. World J Gastroenterol. 2015;21:11567–83.CrossRefGoogle Scholar
  14. 14.
    Toshima T, Shirabe K, Takeishi K, et al. New method for assessing liver fibrosis based on acoustic radiation force impulse: a special reference to the difference between right and left liver. J Gastroenterol. 2011;46:705–11.CrossRefGoogle Scholar
  15. 15.
    Sandrin L, Fourquet B, Hasquenoph JM, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29(12):1705–13.CrossRefGoogle Scholar
  16. 16.
    Cui J, Heba E, Hernandez C, et al. Magnetic resonance elastography is superior to acoustic radiation force impulse for the diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: a prospective study. Hepatology. 2016;63:453–61.CrossRefGoogle Scholar
  17. 17.
    Şirli R, Sporea I, Popescu A, et al. Ultrasound-based elastography for the diagnosis of portal hypertension in cirrhotics. World J Gastroenterol. 2015;21(41):11542–51.CrossRefGoogle Scholar
  18. 18.
    Tatsumi C, Kudo M, Ueshima K, et al. Noninvasive evaluation of hepatic fibrosis using serum fibrotic marker, transient elastography (FibroScan) and real-time tissue elastography. Intervirology. 2008;51(1):27–33.CrossRefGoogle Scholar
  19. 19.
    Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38:518–26.CrossRefGoogle Scholar
  20. 20.
    Vallet-Pichard A, Mallet V, Nalpas B, et al. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. Comparison with liver biopsy and fibrotest. Hepatology. 2007;46:32–6.CrossRefGoogle Scholar
  21. 21.
    Rosenberg I, Cherayil BJ, Isselbacher KJ, et al. Mac-2-binding glycoproteins. Putative ligands for a cytosolic β-galactoside lectin. J Biol Chem. 1991;266:18731–6.PubMedGoogle Scholar
  22. 22.
    Hellstern S, Sasaki T, Fauser C, et al. Functional studies on recombinant domains Mac-2-binding protein. J Biol Chem. 2002;277:15690–6.CrossRefGoogle Scholar
  23. 23.
    Sasaki T, Brakebusch C, Engel J, et al. Mac-2 binging protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta 1 integrins, collagens and fibronectin. EMBO J. 1998;17:1606–13.CrossRefGoogle Scholar
  24. 24.
    Bekki Y, Yoshizumi T, Shimoda S, et al. Hepatic stellate cells secrete WFA+-M2BP. Its role in biological interactions with Kupffer cells. J Gastroenterol Hepatol. 2016.  https://doi.org/10.1111/jgh.13706 (Epub ahead of print).CrossRefGoogle Scholar
  25. 25.
    Kianoush A, Nematollahi M, Waterfield JD, et al. Regulation of RAW 264.7 macrophage polarization on smooth and rough surface topographies by galectin-3. J Biomed Mater Res A. 2017.  https://doi.org/10.1002/jpm.a.36107 (epubahead of print).CrossRefPubMedGoogle Scholar
  26. 26.
    Wang L, Guo XL. Molecular regulation of galectin 3 expression and therapeutic implication in cancer progression. Biomed Pharmacother. 2016;78:165–71.CrossRefGoogle Scholar
  27. 27.
    Kuno A, Sato T, Shimazaki H, et al. Reconstruction of a robust glycodiagnostic agent supported by multiple lectin-assisted glycan profiling. Proteom Clin Appl. 2013;7:642–7.Google Scholar
  28. 28.
    Kuno A, Ikehara Y, Tanaka Y, et al. A serum “sweet-doughnut” protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep. 2013;3:1065.CrossRefGoogle Scholar
  29. 29.
    Narimatsu H. Development of M2BPGi: a novel fibrosis serum glyco-biomarker for chronic hepatitis/cirrhosis diagnostics. Expert Rev Proteom. 2015;12(6):683–93.CrossRefGoogle Scholar
  30. 30.
    Toshima T, Shirabe K, Ikegami T, et al. A novel serum marker, glycosylated Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA(+)-M2BP), for assessing liver fibrosis. J Gastroenterol. 2015;50:76–84.CrossRefGoogle Scholar
  31. 31.
    Yamasaki K, Tateyama M, Abiru S, et al. Elevated serum levels of Wisteria floribunda agglutinin-positive Mac-2 binding protein predict the development of hepatocellular carcinoma in hepatitis C patients. Hepatology. 2014;60:1563–70.CrossRefGoogle Scholar
  32. 32.
    Xu H, Kong W, Liu L, et al. Accuracy of M2BPGi, compared with Fibro Scan®, in analysis of liver fibrosis in patients with hepatitis C. BMC Gastroenterol. 2017;17(1):62.  https://doi.org/10.1186/s12876-017-0618-5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zou X, Zhu MY, Li W, et al. Serum WFA+-M2BP levels for evaluation of early stage of liver fibrosis in patients with chronic hepatitis B virus infection. Liver Int. 2017;37:35–44.CrossRefGoogle Scholar
  34. 34.
    Nishikawa H, Hasegawa K, Ishii A, et al. A proposed predictive model for advanced fibrosis in patients with chronic hepatitis B and its validation. Medicine. 2016;95(35):e4679.CrossRefGoogle Scholar
  35. 35.
    Ishii A, Nishikawa H, Enomoto H, et al. Clinical implication of serum Wisteria floribunda agglutinin positive Mac-2 binding protein in treatment-naïve chronic hepatitis B. Hepatol Res. 2017;47:204–15.CrossRefGoogle Scholar
  36. 36.
    Nakamura M, Kanda T, Jiang X, et al. Serum microRNA-122 and Wisteria floribunda agglutinin positive Mac-2-binding protein are useful tools for liquid biopsy of the patients with hepatitis B virus and advanced liver fibrosis. PLoS One. 2017;12:e177302.  https://doi.org/10.1371/journal.pone.0177302.CrossRefGoogle Scholar
  37. 37.
    Wei B, Feng S, Chen E, Li D, et al. M2BPGi as a potential diagnostic tool of cirrhosis in Chinese patients with Hepatitis B virus infection. J Clin Lab Anal. 2017.  https://doi.org/10.1002/jcla.22261 (Epub ahead of print).CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Miyaki E, Imamura M, Hiraga N, et al. Daclatasvir and asunaprevir treatment improves liver function parameters and reduces liver fibrosis markers in chronic hepatitis C patients. Hepatol Res. 2016;46(8):758–64.CrossRefGoogle Scholar
  39. 39.
    Suda T, Okawa O, Masaoka R, et al. Shear wave elastography in hepatitis C patients before and after antiviral therapy. World J Hepatol. 2017;9(1):64–8.CrossRefGoogle Scholar
  40. 40.
    Umemura T, Joshita S, Sekiguchi T, et al. Serum Wisteria floribunda agglutinin positive Mac-2-binding protein level predicts liver fibrosis and prognosis in primary biliary cirrhosis. Am J Gastroenterol. 2015;110:857–64.CrossRefGoogle Scholar
  41. 41.
    Nishikawa H, Enomoto H, Iwata Y, et al. Impact of serum Wisteria floribunda agglutinin positive Mac-2-binding protein and serum interferon-γ-inducible protein-10 in primary biliary cirrhosis. Hepatol Res. 2016;46:575–83.CrossRefGoogle Scholar
  42. 42.
    Yamada N, Sanada Y, Tashiro M, et al. Serum Mac-2 binding protein glycosylation isomer predicts grade F4 liver fibrosis in patients with biliary atresia. J Gastroenterol. 2017;52:245–52.CrossRefGoogle Scholar
  43. 43.
    Nishikawa H, Enomoto H, Iwata Y, et al. Clinical significance of serum Wisteria floribunda agglutinin positive Mac-2-binding protein level and high-sensitivity C-reactive protein concentration in autoimmune hepatitis. Hepatol Res. 2016;46:613–21.CrossRefGoogle Scholar
  44. 44.
    Abe M, Miyake T, Kuno A, et al. Association between Wisteria floribunda agglutinin positive Mac-2-binding protein and the fibrosis stage of non-alcoholic fatty liver disease. J Gastroetenrol. 2015;50:776–84.CrossRefGoogle Scholar
  45. 45.
    Mizuno M, Shima T, Oya H, et al. Classification of patients with non-alcoholic fatty liver disease using rapid immunoassay of serum type IV collagen compared with liver histology and other fibrosis markers. Hepatol Res. 2017;47:216–25.CrossRefGoogle Scholar
  46. 46.
    Shigefuku R, Takahashi H, Nakano H, et al. Correlations of hepatic hemodynamics, liver function, and fibrosis markers in nonalcoholic fatty liver disease: comparison with chronic hepatitis related to hepatitis C virus. Int J Mol Sci. 2016;17:1545.  https://doi.org/10.3390/jims17091545.CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Nishikawa H, Enomoto H, Iwata Y, et al. Clinical significance of serum Wisteria floribunda agglutinin positive Mac-2-binding protein level in non-alcoholic steatohepatitis. Hepatol Res. 2016;46:1194–202.CrossRefGoogle Scholar
  48. 48.
    Lai LL, Chan WK, Sthaneshwar P, et al. Serum Wisteria floribunda agglutinin positive Mac-2-binding protein in non-alcoholic fatty liver disease. PLoS One. 2017;12:e174982.Google Scholar
  49. 49.
    Ito K, Murotani K, Nakade Y, et al. Serum WFA+-M2BP levels predict liver fibrosis, development of hepatocellular carcinoma, and overall survival: A meta-analysis. J Gastroenterol Hepatol. 2017.  https://doi.org/10.1111/jgh.13802 (Epub ahead of print).CrossRefPubMedGoogle Scholar
  50. 50.
    Nishikawa H, Enomoto H, Iwata Y, et al. Serum Wisteria floribunda agglutinin positive Mac-2-binding protein for patients with chronic hepatitis B and C: a comparative study. J Viral Hepat. 2016;23:977–84.CrossRefGoogle Scholar
  51. 51.
    Kleiner DF, Brunt EM, Natta MV, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.CrossRefGoogle Scholar
  52. 52.
    Nagata H, Nakagawa M, Nishimura-Sakurai Y, et al. Serum measurement of Wisteria floribunda agglutinin positive Mac-2-binding protein is useful for predicting liver fibrosis and the development of hepatocellular carcinoma in chronic hepatitis C patients treated with IFN-based and IFN-free therapy. Hepatol Int. 2016;10:956–64.CrossRefGoogle Scholar
  53. 53.
    Hanai T, Shiraki M, Ohnishi S, et al. Impact of serum glycosylated Wisteria floribunda agglutinin positive Mac-2 binding protein levels on liver functional reserves and mortality in patients with liver cirrhosis. Hepatol Res. 2015;45:1083–90.CrossRefGoogle Scholar
  54. 54.
    Nishikawa H, Takata R, Enomoto H, et al. Proposal of a predictive model for advanced fibrosis containing Wisteria floribunda agglutinin-positive Mac-2 binding protein in chronic hepatitis C. Hepatol Res. 2017;47:E47–84.Google Scholar
  55. 55.
    Ura K, Furusho N, Ogawa E, et al. Serum WFA(+)-M2BP is a non-invasive liver fibrosis marker that can predict the efficacy of direct acting anti-viral-based triple therapy for chronic hepatitis C. Aliment Phamacol Ther. 2016;43:114–24.CrossRefGoogle Scholar
  56. 56.
    Watanabe T, Tokumoto Y, Joko K, et al. Predictors of treatment efficacy and ALT non-normalization with sofosbuvir/ribavirin therapy for patients with hepatitis C virus genotype 2. J Med Virol. 2017.  https://doi.org/10.1002/jmv.24776 (Epub ahead of print).CrossRefPubMedGoogle Scholar
  57. 57.
    Nishikawa H, Enomoto H, Iwata Y, et al. Clinical implication of serum Wisteria floribunda agglutinin positive Mac-2-binding protein level on hepatitis B e-antigen loss or seroconversion in hepatitis B e-antigen positive patients. Hepatol Res. 2016;46:1065–73.CrossRefGoogle Scholar
  58. 58.
    Hasegawa K, Takata R, Nishikawa H, et al. Impact of Wisteria floribunda agglutinin positive Mac-2-binding protein in patients with hepatitis C virus related compensated liver cirrhosis. Int J Mol Sci. 2016;17:1500.  https://doi.org/10.3390/ijms17091500.CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Okuda Y, Taura K, Yoshino K, et al. Usefulness of Mac-2 binding protein glycosylation isomer for prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma. Ann Surg. 2017;265:1201–8.CrossRefGoogle Scholar
  60. 60.
    Morio K, Imamura M, Daijo K, et al. Wisteria floribunda agglutinin positive Mac-2-binding protein level increases in patients with acute liver injury. J Gastroenterol. 2017.  https://doi.org/10.1007/s00535-017-1345-y.CrossRefPubMedGoogle Scholar
  61. 61.
    Tamaki N, Kurosaki M, Kuno A, et al. Wisteria floribunda agglutinin positive Mac-2-binding protein as a predictor of hepatocellular carcinoma development in chronic hepatitis C patients. Hepatol Res. 2015;45:E82–8.CrossRefGoogle Scholar
  62. 62.
    Sato S, Genda T, Ichida T, et al. Prediction of hepatocellular carcinoma development after hepatitis C virus eradication using serum Wisteria floribunda agglutinin positive Mac-2-binding protein. Int J Mol Sci. 2016;17:2143.  https://doi.org/10.3390/ijms17122143.CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sasaki R, Yamasaki K, Abiru S, et al. Serum Wisteria floribunda agglutinin positive Mac-2-binding protein values predict the development of hepatocellular carcinoma among patients with chronic hepatitis C after sustained virological response. PLoS One. 2015;50:1134–44.Google Scholar
  64. 64.
    Heo JY, Kim SU, Kim BK, et al. Use of Wisteria floribunda agglutinin positive Mac-2-binding protein in assessing risk of hepatocellular carcinoma due to hepatitis B. Medicine. 2016;95:e3328.CrossRefGoogle Scholar
  65. 65.
    Kim SU, Heo JY, Kim BK, et al. Wisteria floribunda agglutinin positive Mac-2-binding protein predicts the risk of HBV-related liver cancer development. Liver Int. 2016.  https://doi.org/10.1111/liv.13341 (Epub ahead of print).CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ichikawa Y, Joshita S, Umemura T, et al. Serum Wisteria floribunda agglutinin positive Mac-2-binding protein may predict liver fibrosis and progression to hepatocellular carcinoma in patients with chronic hepatitis B virus infection. Hepatol Res. 2017;47:226–33.CrossRefGoogle Scholar
  67. 67.
    Cheung KS, Seto WK, Wong DK, et al. Wisteria floribunda agglutinin-positive human Mac-2 binding protein predicts liver cancer development in chronic hepatitis B patients under antiviral treatment. Oncotarget. 2017.  https://doi.org/10.18632/oncotarget.17670 (Epub ahead of print).CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Tateyama M, Yatsuhashi H, Taura N, et al. Alpha-fetoprotein above normal levels as a risk factor for the development of hepatocellular carcinoma in patients infected with hepatitis C virus. J Gastroenterol. 2011;46:92–100.CrossRefGoogle Scholar
  69. 69.
    Westbrook RH, Dusheiko G. Natural history of hepatitis C. J Hepatol. 2014;61:S58–68.CrossRefGoogle Scholar
  70. 70.
    Fujiyoshi M, Kuno A, Gotoh M, et al. Clinicopathological characteristics and diagnostic performance of Wisteria floribunda agglutinin positive Mac-2-binding protein as a preoperative serum marker of liver fibrosis in hepatocellular carcinoma. J Gastroenterol. 2015;50:1134–44.CrossRefGoogle Scholar
  71. 71.
    Toyoda H, Kumada T, Tada T, et al. Serum WFA+-M2BP levels as a prognostic factor in patients with early hepatocellular carcinoma undergoing curative resection. Liver Int. 2016;36:293–301.CrossRefGoogle Scholar
  72. 72.
    Kono M, Nakamura Y, Oyama Y, et al. Increased levels of serum Wisteria floribunda agglutinin positive Mac-2-binding protein in idiopathic pulmonary fibrosis. Respir Med. 2016;115:46–52.CrossRefGoogle Scholar
  73. 73.
    Fujiyama T, Ito T, Ueda K, et al. Srume levels of Wisteria floribunda agglutinin positive Mac-2-binding protein reflect the severity of chronic pancreatitis. J Dig Dis. 2017.  https://doi.org/10.1111/1751-2980.12475 (Epub ahead of print).CrossRefPubMedGoogle Scholar
  74. 74.
    Waragai Y, Suzuki R, Takagi T, et al. Clinical significance of serum Wisteria floribunda agglutinin positive Mac-2-binding protein in pancreatic ductal adenocarcinoma. Pancreatology. 2016;16:1044–50.CrossRefGoogle Scholar
  75. 75.
    Apte MV, Wilson JS, Lugaea A, et al. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 2013;144:1210–9.CrossRefGoogle Scholar
  76. 76.
    Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAIR Cooperative Study Group. Hepatology. 1996;24:289–93.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Gastroenterology 2018

Authors and Affiliations

  • Ken Shirabe
    • 1
    Email author
  • Yuki Bekki
    • 2
  • Dolgormaa Gantumur
    • 1
  • Kenichiro Araki
    • 1
  • Norihiro Ishii
    • 1
  • Atsushi Kuno
    • 3
  • Hisashi Narimatsu
    • 3
  • Masashi Mizokami
    • 4
  1. 1.Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgical ScienceGunma University, Graduate School of MedicineMaebashiJapan
  2. 2.Department of Surgery and ScienceKyushu University, Graduate School of MedicineFukuokaJapan
  3. 3.Research Center for Medical GlycoscienceNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  4. 4.Research Center for Hepatitis and Immunology, National Center for Global Health and MedicineIchikawaJapan

Personalised recommendations