Journal of Gastroenterology

, Volume 53, Issue 4, pp 517–524 | Cite as

Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population

  • Yuko Yamaoka
  • Yutaka SuehiroEmail author
  • Shinichi Hashimoto
  • Tomomi Hoshida
  • Michiyo Fujimoto
  • Michiya Watanabe
  • Daiki Imanaga
  • Kouhei Sakai
  • Toshihiko Matsumoto
  • Mitsuaki Nishioka
  • Taro Takami
  • Nobuaki Suzuki
  • Shoichi Hazama
  • Hiroaki Nagano
  • Isao Sakaida
  • Takahiro Yamasaki
Original Article—Alimentary Tract



Accumulating evidence shows an overabundance of Fusobacterium nucleatum in colorectal tumor tissues. However, the correlation between the absolute copy number of F. nucleatum in colorectal cancer tissues and colorectal cancer progression is unclear from previous reports. Therefore, we performed a study to compare the abundance of F. nucleatum in colorectal tissues with clinicopathologic and molecular features of colorectal cancer.


We collected 100 colorectal cancer tissues and 72 matched normal-appearing mucosal tissues. Absolute copy numbers of F. nucleatum were measured by droplet digital PCR.


The detection rates of F. nucleatum were 63.9% (46/72) in normal-appearing mucosal tissues and 75.0% (75/100) in CRC tissue samples. The median copy number of F. nucleatum was 0.4/ng DNA in the normal-appearing colorectal mucosa in patients with colorectal cancer and 1.9/ng DNA in the colorectal cancer tissues (P = 0.0031). F. nucleatum copy numbers in stage IV colorectal cancer tissues were significantly higher than those in the normal-appearing mucosa in patients with colorectal cancer (P = 0.0016). The abundance of F. nucleatum in colorectal cancer tissues correlated with tumor size and KRAS mutation and was significantly associated with shorter overall survival times; this trend was notable in the patients with stage IV colorectal cancer. Focusing on normal-appearing mucosa in the patients with colorectal cancer, the F. nucleatum copy number was significantly higher in the patients with stage IV rather than stages I–III.


These results suggest that determining F. nucleatum levels may help predict clinical outcomes in colorectal cancer patients. Further confirmatory studies using independent datasets are required to confirm our findings.


Colorectal cancer Droplet digital PCR DNA test Fusobacterium nucleatum Prognosis 



Colorectal cancer


Fusobacterium nucleatum


Receiver-operating characteristic



We are very grateful to Ms. Naoko Okayama and Mr. Hidekazu Mizuno of Yamaguchi University Hospital for their invaluable help in analyzing the data. This study was supported by JSPS KAKENHI Grant no. 25460687.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.


  1. 1.
    Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Flanagan L, Schmid J, Ebert M, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 2014;33:1381–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Tahara T, Yamamoto E, Suzuki H, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014;74:1311–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ito M, Kanno S, Nosho K, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer. 2015;137:1258–68.CrossRefPubMedGoogle Scholar
  5. 5.
    Abed J, Emgard JE, Zamir G, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe. 2016;20:215–25.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li YY, Ge QX, Cao J, et al. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J Gastroenterol. 2016;22:3227–33.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Michaud DS. Role of bacterial infections in pancreatic cancer. Carcinogenesis. 2013;34:2193–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Michaud DS, Izard J, Wilhelm-Benartzi CS, et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut. 2013;62:1764–70.CrossRefPubMedGoogle Scholar
  9. 9.
    Signat B, Roques C, Poulet P, et al. Fusobacterium nucleatum in periodontal health and disease. Curr Issues Mol Biol. 2011;13:25–36.PubMedGoogle Scholar
  10. 10.
    Ohkusa T, Okayasu I, Ogihara T, et al. Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut. 2003;52:79–83.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Minami M, Ando T, Okamoto A, et al. Seroprevalence of Fusobacterium varium in ulcerative colitis patients in Japan. FEMS Immunol Med Microbiol. 2009;56:67–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Strauss J, Kaplan GG, Beck PL, et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17:1971–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Brook I, Frazier EH. Microbiological analysis of pancreatic abscess. Clin Infect Dis. 1996;22:384–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Shahani L, Khardori N. Fusobacterium necrophorum–beyond Lemierres syndrome. BMJ Case Rep. 2011.Google Scholar
  15. 15.
    Yoneda M, Kato S, Mawatari H, et al. Liver abscess caused by periodontal bacterial infection with Fusobacterium necrophorum. Hepatol Res. 2011;41:194–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Athavale NV, Leitch DG, Cowling P. Liver abscesses due to Fusobacterium spp that mimic malignant metastatic liver disease. Eur J Clin Microbiol Infect Dis. 2002;21:884–6.PubMedGoogle Scholar
  17. 17.
    Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Han YW, Ikegami A, Rajanna C, et al. Identification and characterization of a novel adhesin unique to oral fusobacteria. J Bacteriol. 2005;187:5330–40.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Xu M, Yamada M, Li M, et al. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J Biol Chem. 2007;282:25000–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Ikegami A, Chung P, Han YW. Complementation of the fadA mutation in Fusobacterium nucleatum demonstrates that the surface-exposed adhesin promotes cellular invasion and placental colonization. Infect Immun. 2009;77:3075–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CrossRefGoogle Scholar
  24. 24.
    Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome. J Bacteriol. 2010;192:5002–17.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Faust K, Sathirapongsasuti JF, Izard J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ashare A, Stanford C, Hancock P, et al. Chronic liver disease impairs bacterial clearance in a human model of induced bacteremia. Clin Transl Sci. 2009;2:199–205.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83:8604–10.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sobin LH, Gospodarowicz MK, Wittekind C, editors. TNM classification of malignant tumours. 7th ed. Oxford: Wiley; 2009.Google Scholar
  29. 29.
    Suehiro Y, Sakai K, Nishioka M, et al. Highly sensitive stool DNA testing of Fusobacterium nucleatum as a marker for detection of colorectal tumours in a Japanese population. Ann Clin Biochem. 2017;54:86–91.CrossRefPubMedGoogle Scholar
  30. 30.
    Martin FE, Nadkarni MA, Jacques NA, et al. Quantitative microbiological study of human carious dentine by culture and real-time PCR: association of anaerobes with histopathological changes in chronic pulpitis. J Clin Microbiol. 2002;40:1698–704.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Suehiro Y, Wong CW, Chirieac LR, et al. Epigenetic-genetic interactions in the APC/WNT, RAS/RAF, and P53 pathways in colorectal carcinoma. Clin Cancer Res. 2008;14:2560–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of microRNA-21. Gastroenterology. 2017;152(851–66):e24.Google Scholar
  33. 33.
    Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65:1973–80.CrossRefPubMedGoogle Scholar
  34. 34.
    Stillwell AP, Ho YH, Veitch C. Systematic review of prognostic factors related to overall survival in patients with stage IV colorectal cancer and unresectable metastases. World J Surg. 2011;35:684–92.CrossRefPubMedGoogle Scholar
  35. 35.
    Mima K, Sukawa Y, Nishihara R, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015;1:653–61.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Galon J, Mlecnik B, Bindea G, et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol. 2014;232:199–209.CrossRefPubMedGoogle Scholar
  37. 37.
    Tuttle RS, Strubel NA, Mourad J, et al. A non-lectin-like mechanism by which Fusobacterium nucleatum 10953 adheres to and activates human lymphocytes. Oral Microbiol Immunol. 1992;7:78–83.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Gastroenterology 2017

Authors and Affiliations

  • Yuko Yamaoka
    • 1
  • Yutaka Suehiro
    • 2
    Email author
  • Shinichi Hashimoto
    • 1
  • Tomomi Hoshida
    • 2
  • Michiyo Fujimoto
    • 3
  • Michiya Watanabe
    • 3
  • Daiki Imanaga
    • 3
  • Kouhei Sakai
    • 2
    • 4
  • Toshihiko Matsumoto
    • 2
  • Mitsuaki Nishioka
    • 5
  • Taro Takami
    • 1
  • Nobuaki Suzuki
    • 6
  • Shoichi Hazama
    • 7
  • Hiroaki Nagano
    • 6
  • Isao Sakaida
    • 1
  • Takahiro Yamasaki
    • 2
  1. 1.Department of Gastroenterology and HepatologyYamaguchi University Graduate School of MedicineUbeJapan
  2. 2.Department of Oncology and Laboratory MedicineYamaguchi University Graduate School of MedicineUbeJapan
  3. 3.Yamaguchi University School of MedicineUbeJapan
  4. 4.Department of GastroenterologyShowa HospitalShimonosekiJapan
  5. 5.Division of LaboratoryYamaguchi University HospitalUbeJapan
  6. 6.Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
  7. 7.Department of Translational Research and Developmental Therapeutics Against CancerYamaguchi University Graduate School of MedicineUbeJapan

Personalised recommendations