Journal of Gastroenterology

, Volume 52, Issue 10, pp 1090–1100 | Cite as

Epithelial barrier dysfunction in lymphocytic colitis through cytokine-dependent internalization of claudin-5 and -8

  • Christian Barmeyer
  • Irene Erko
  • Karem Awad
  • Anja Fromm
  • Christian Bojarski
  • Svenja Meissner
  • Christoph Loddenkemper
  • Martin Kerick
  • Britta Siegmund
  • Michael Fromm
  • Michal R. Schweiger
  • Jörg-Dieter SchulzkeEmail author
Original Article—Alimentary Tract



Watery diarrhea is the cardinal symptom of lymphocytic colitis (LC). We have previously shown that colonic Na malabsorption is one of the major pathologic alterations of LC and found evidence for an epithelial barrier defect. On these grounds, this study aimed to identify the inherent mechanisms of this epithelial barrier dysfunction and its regulatory features.


Epithelial resistance (R epi) was determined by one-path impedance spectroscopy and 3H-mannitol fluxes were performed on biopsies from sigmoid colon in miniaturized Ussing chambers. Tight junction proteins were analyzed by Western blot and confocal microscopy. Inflammatory signaling was characterized in HT-29/B6 cells. Apoptosis and mucosal surface parameters were quantified morphologically.


R epi was reduced to 53% and 3H-mannitol fluxes increased 1.7-fold in LC due to lower expression of claudin-4, -5, and -8 and altered subcellular claudin-5 and -8 distributions off the tight junction. TNFα and IFNγ could mimic subcellular redistribution in HT-29/B6 cells, a process which was independent on MLCK activation. Epithelial apoptosis did not contribute to barrier dysfunction in LC and mucosal surface area was unchanged.


Epithelial barrier dysfunction in LC occurs through downregulation of claudin-4, -5, and -8, and redistribution of claudin-5 and -8 off the tight junction, which contributes to diarrhea by a leak-flux mechanism. The key effector cytokines TNFα and IFNγ turned out to be the trigger for redistribution of claudin-5 and -8. Thus, alongside sodium malabsorption, leak-flux is yet another important diarrheal mechanism in LC.


Lymphocytic colitis Tight junction Claudin Cytokines 



We thank Detlef Sorgenfrei († January 2015) for excellent technical support.

Compliance with ethical standards

Funding information

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Grants Schu 559/10-2, FOR 721/2 and the Volkswagenstiftung (Lichtenberg Program to MRS).

Conflict of interest

Britta Siegmund has served as consultant for Abbvie, Janssen, Hospira, MSD, Mundipharma, Takeda, received speaker fees from Abbvie, Falk, Ferring, Hospira, MSD, Takeda and received a research grant from Hospira. All other authors declare that they have no conflicts of interest.

Supplementary material

535_2017_1309_MOESM1_ESM.tif (3.8 mb)
Supplementary material 1 (TIFF 3865 kb)
535_2017_1309_MOESM2_ESM.jpg (3.8 mb)
Supplementary material 2 (JPEG 3862 kb)


  1. 1.
    Williams JJ, Beck PL, Andrews CN, et al. Microscopic colitis—a common cause of diarrhoea in older adults. Age Ageing. 2010;39(2):162–8 (Epub 2010/01/11).CrossRefPubMedGoogle Scholar
  2. 2.
    Barmeyer C, Erko I, Fromm A, et al. Ion transport and barrier function are disturbed in microscopic colitis. Ann N Y Acad Sci. 2012;1258:143–8 (Epub 2012/06/27).CrossRefPubMedGoogle Scholar
  3. 3.
    Barmeyer C, Erko I, Fromm A, et al. ENaC dysregulation through activation of mek1/2 contributes to impaired Na+ absorption in lymphocytic colitis. Inflamm Bowel Dis. 2016;22(3):539–47.CrossRefPubMedGoogle Scholar
  4. 4.
    Bo-Linn GW, Vendrell DD, Lee E, et al. An evaluation of the significance of microscopic colitis in patients with chronic diarrhea. J Clin Investig. 1985;75(5):1559–69 (Epub 1985/05/01).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Protic M, Jojic N, Bojic D, et al. Mechanism of diarrhea in microscopic colitis. World J Gastroenterol. 2005;11(35):5535–9 (Epub 2005/10/14).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Amasheh M, Grotjohann I, Amasheh S, et al. Regulation of mucosal structure and barrier function in rat colon exposed to tumor necrosis factor alpha and interferon gamma in vitro: a novel model for studying the pathomechanisms of inflammatory bowel disease cytokines. Scand J Gastroenterol. 2009;44(10):1226–35 (Epub 2009/08/07).CrossRefPubMedGoogle Scholar
  7. 7.
    Bürgel N, Bojarski C, Mankertz J, et al. Mechanisms of diarrhea in collagenous colitis. Gastroenterology. 2002;123(2):433–43 (Epub 2002/07/30).CrossRefPubMedGoogle Scholar
  8. 8.
    Schmitz H, Barmeyer C, Fromm M, et al. Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology. 1999;116(2):301–9 (Epub 1999/01/29).CrossRefPubMedGoogle Scholar
  9. 9.
    Zeissig S, Bürgel N, Günzel D, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56(1):61–72 (Epub 2006/07/11).CrossRefPubMedGoogle Scholar
  10. 10.
    Furuse M, Hirase T, Itoh M, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123(6 Pt 2):1777–88 (Epub 1993/12/01).CrossRefPubMedGoogle Scholar
  11. 11.
    Morita K, Furuse M, Fujimoto K, et al. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA. 1999;96(2):511–6 (Epub 1999/01/20).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Günzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93(2):525–69 (Epub 2013/04/17).CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wildt S, Madsen JL, Rumessen JJ. Small-bowel permeability in collagenous colitis. Scand J Gastroenterol. 2006;41(9):1044–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Tai YH, Tai CY. The conventional short-circuiting technique under-short-circuits most epithelia. J Membr Biol. 1981;59(3):173–7 (Epub 1981/04/30).CrossRefPubMedGoogle Scholar
  15. 15.
    Stockmann M, Fromm M, Schmitz H, et al. Duodenal biopsies of HIV-infected patients with diarrhoea exhibit epithelial barrier defects but no active secretion. AIDS. 1998;12(1):43–51 (Epub 1998/02/10).CrossRefPubMedGoogle Scholar
  16. 16.
    Fromm M, Krug SM, Zeissig S, et al. High-resolution analysis of barrier function. Ann N Y Acad Sci. 2009;1165:74–81.CrossRefPubMedGoogle Scholar
  17. 17.
    Clarke RM. Mucosal architecture and epithelial cell production rate in the small intestine of the albino rat. J Anat. 1970;107(Pt 3):519–29 (Epub 1970/11/01).PubMedPubMedCentralGoogle Scholar
  18. 18.
    Menge H, Kohn R, Dietermann KH, et al. Structural and functional alterations in the mucosa of self-filling intestinal blind loops in rats. Clin Sci (Lond). 1979;56(2):121–31 (Epub 1979/02/01).CrossRefGoogle Scholar
  19. 19.
    Schulzke JD, Fromm M, Bentzel CJ, et al. Ion transport in the experimental short bowel syndrome of the rat. Gastroenterology. 1992;102(2):497–504 (Epub 1992/02/01).CrossRefPubMedGoogle Scholar
  20. 20.
    Troeger H, Loddenkemper C, Schneider T, et al. Structural and functional changes of the duodenum in human norovirus infection. Gut. 2009;58(8):1070–7 (Epub 2008/11/28).CrossRefPubMedGoogle Scholar
  21. 21.
    Desai S, Kumar A, Laskar S, et al. Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells. Cytokine. 2013;61(1):54–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Clayburgh DR, Barrett TA, Tang Y, et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Investig. 2005;115(10):2702–15 (Epub 2005/09/27).CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004;286(6):C1213–28 (Epub 2004/05/21).CrossRefPubMedGoogle Scholar
  24. 24.
    Das P, Goswami P, Das TK, et al. Comparative tight junction protein expressions in colonic Crohn’s disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch: Int J Pathol. 2012;460(3):261–70.CrossRefGoogle Scholar
  25. 25.
    Scharl M, Paul G, Barrett KE, et al. AMP-activated protein kinase mediates the interferon-gamma-induced decrease in intestinal epithelial barrier function. J Biol Chem. 2009;284(41):27952–63.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Amasheh S, Milatz S, Krug SM, et al. Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochem Biophys Res Commun. 2009;378(1):45–50 (Epub 2008/11/13).CrossRefPubMedGoogle Scholar
  27. 27.
    Van Itallie C, Rahner C, Anderson JM. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Investig. 2001;107(10):1319–27 (Epub 2001/05/26).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yu AS, Enck AH, Lencer WI, et al. Claudin-8 expression in Madin–Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem. 2003;278(19):17350–9 (Epub 2003/03/05).CrossRefPubMedGoogle Scholar
  29. 29.
    Blair SA, Kane SV, Clayburgh DR, et al. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Investig. 2006;86(2):191–201 (Epub 2006/01/13).CrossRefPubMedGoogle Scholar
  30. 30.
    Shen L, Black ED, Witkowski ED, et al. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci. 2006;119(Pt 10):2095–106 (Epub 2006/04/28).CrossRefPubMedGoogle Scholar
  31. 31.
    Marchiando AM, Shen L, Graham WV, et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol. 2010;189(1):111–26 (Epub 2010/03/31).CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Stamatovic SM, Keep RF, Wang MM, et al. Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. J Biol Chem. 2009;284(28):19053–66 (Epub 2009/05/09).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bücker R, Krug SM, Rosenthal R, et al. Aerolysin from Aeromonas hydrophila perturbs tight junction integrity and cell lesion repair in intestinal epithelial HT-29/B6 cells. J Infect Dis. 2011;204(8):1283–92.CrossRefPubMedGoogle Scholar
  34. 34.
    Bücker R, Troeger H, Kleer J, et al. Arcobacter butzleri induces barrier dysfunction in intestinal HT-29/B6 cells. J Infect Dis. 2009;200(5):756–64.CrossRefPubMedGoogle Scholar
  35. 35.
    Nielsen HL, Engberg J, Ejlertsen T, et al. Short-term and medium-term clinical outcomes of Campylobacter concisus infection. Clin Microbiol Infect: Off Publ Eur Soc Clin Microbiol Infect Dis. 2012;18(11):E459–65 (Epub 2012/08/14).CrossRefGoogle Scholar
  36. 36.
    Esteve M, Mahadevan U, Sainz E, et al. Efficacy of anti-TNF therapies in refractory severe microscopic colitis. J Crohn’s Colitis. 2011;5(6):612–8 (Epub 2011/11/26).CrossRefGoogle Scholar
  37. 37.
    Münch A, Ignatova S, Ström M. Adalimumab in budesonide and methotrexate refractory collagenous colitis. Scand J Gastroenterol. 2012;47(1):59–63 (Epub 2011/12/14).CrossRefPubMedGoogle Scholar
  38. 38.
    Kucharzik T, Walsh SV, Chen J, et al. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol. 2001;159(6):2001–9 (Epub 2001/12/06).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Society of Gastroenterology 2017

Authors and Affiliations

  • Christian Barmeyer
    • 1
    • 2
  • Irene Erko
    • 1
  • Karem Awad
    • 2
  • Anja Fromm
    • 2
  • Christian Bojarski
    • 1
  • Svenja Meissner
    • 1
  • Christoph Loddenkemper
    • 3
    • 6
  • Martin Kerick
    • 4
  • Britta Siegmund
    • 1
  • Michael Fromm
    • 2
  • Michal R. Schweiger
    • 4
    • 5
  • Jörg-Dieter Schulzke
    • 1
    • 2
    Email author
  1. 1.Department of Gastroenterology, Infectious Diseases and RheumatologyCharitéBerlinGermany
  2. 2.Institute of Clinical PhysiologyCharitéBerlinGermany
  3. 3.Institute of PathologyCharitéBerlinGermany
  4. 4.Max Planck Institute for Molecular GeneticsBerlinGermany
  5. 5.Cologne Center for GenomicsUniversity of CologneCologneGermany
  6. 6.Institute of Pathology PathoTresBerlinGermany

Personalised recommendations