Journal of Gastroenterology

, Volume 52, Issue 4, pp 452–465

A human gut ecosystem protects against C. difficile disease by targeting TcdA

  • Sarah Lynn Martz
  • Mabel Guzman-Rodriguez
  • Shu-Mei He
  • Curtis Noordhof
  • David John Hurlbut
  • Gregory Brian Gloor
  • Christian Carlucci
  • Scott Weese
  • Emma Allen-Vercoe
  • Jun Sun
  • Erika Chiong Claud
  • Elaine Olga Petrof
Original Article—Alimentary Tract



A defined Microbial Ecosystem Therapeutic (MET-1, or “RePOOPulate”) derived from the feces of a healthy volunteer can cure recurrent C. difficile infection (rCDI) in humans. The mechanisms of action whereby healthy microbiota protect against rCDI remain unclear. Since C. difficile toxins are largely responsible for the disease pathology of CDI, we hypothesized that MET-1 exerts its protective effects by inhibiting the effects of these toxins on the host.


A combination of in vivo (antibiotic-associated mouse model of C. difficile colitis, mouse ileal loop model) and in vitro models (FITC-phalloidin staining, F actin Western blots and apoptosis assay in Caco2 cells, transepithelial electrical resistance measurements in T84 cells) were employed.


MET-1 decreased both local and systemic inflammation in infection and decreased both the cytotoxicity and the amount of TcdA detected in stool, without an effect on C.difficile viability. MET-1 protected against TcdA-mediated damage in a murine ileal loop model. MET-1 protected the integrity of the cytoskeleton in cells treated with purified TcdA, as indicated by FITC-phalloidin staining, F:G actin assays and preservation of transepithelial electrical resistance. Finally, co-incubation of MET-1 with purified TcdA resulted in decreased detectable TcdA by Western blot analysis.


MET-1 intestinal microbiota confers protection against C. difficile and decreases C. difficile-mediated inflammation through its protective effects against C. difficile toxins, including enhancement of host barrier function and degradation of TcdA. The effect of MET-1 on C. difficile viability seems to offer little, if any, contribution to its protective effects on the host.


Microbiota C. difficile TcdA 

Supplementary material

535_2016_1232_MOESM1_ESM.pdf (571 kb)
Supplementary material 1 (PDF 570 kb)
535_2016_1232_MOESM2_ESM.pdf (68 kb)
Supplementary material 2 (PDF 68 kb)
535_2016_1232_MOESM3_ESM.pdf (7.8 mb)
Supplementary material 3 (PDF 8016 kb)


  1. 1.
    Rohlke F, Stollman N. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Ther Adv Gastroenterol. 2012;5(6):403–20.CrossRefGoogle Scholar
  2. 2.
    Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis. 2011;53:994–1002.CrossRefPubMedGoogle Scholar
  4. 4.
    van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Britton RA, Young VB. Interaction between the intestinal microbiota and host in Clostridium difficilecolonization resistance. Trends Microbiol. 2012;20(7):313–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Seekatz AM, Theriot CM, Molloy CT, et al. Fecal microbiota transplantation eliminates Clostridium difficile in a murine model of relapsing disease. Infect Immun. 2015;83(10):3838–46.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wilson KH. The microecology of Clostridium difficile. Clin Infect Dis. 1993;16(Suppl 4):S214–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Li M, Liang P, Li Z, et al. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis. Front Microbiol. 2015;6:692.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517(7533):205–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol. 2008;190(7):2505–12.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ng KM, Ferreyra JA, Higginbottom SK, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature. 2013;502(7469):96–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kuehne SA, Cartman ST, Heap JT, et al. The role of toxin A and toxin B in Clostridium difficile infection. Nature. 2010;467(7316):711–3.CrossRefPubMedGoogle Scholar
  13. 13.
    Kuehne SA, Collery MM, Kelly ML, et al. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J Infect Dis. 2014;209(1):83–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Lyras D, O’Connor JR, Howarth PM, et al. Toxin B is essential for virulence of Clostridium difficile. Nature. 2009;458(7242):1176–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Planche TD, Davies KA, Coen PG, et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C. difficile infection. Lancet Infect Dis. 2013;13(11):936–45.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Polage CR, Gyorke CE, Kennedy MA, et al. Overdiagnosis of Clostridium difficile infection in the molecular test era. JAMA Intern Med 2015;175(11):1792–801.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gerding DN, Meyer T, Lee C, et al. Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA. 2015;313(17):1719–27.CrossRefPubMedGoogle Scholar
  18. 18.
    Lawley TD, Clare S, Walker AW, et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 2012;8(10):e1002995.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Petrof EO, Gloor GB, Vanner SJ, et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome. 2013;1(1):3.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bidet P, Barbut F, Lalande V, et al. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett. 1999;175(2):261–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Sullivan NM, Pellett S, Wilkins TD. Purification and characterization of toxins A and B of Clostridium difficile. Infect Immun. 1982;35(3):1032–40.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen X, Katchar K, Goldsmith JD, Nanthakumar N, et al. A mouse model of Clostridium difficile-associated disease. Gastroenterology. 2008;135(6):1984–92.CrossRefPubMedGoogle Scholar
  23. 23.
    Martz SL, McDonald JA, Sun J, et al. Administration of defined microbiota is protective in a murine Salmonella infection model. Sci Rep 2015;5:16094.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Castagliuolo I, Riegler M, Pasha A, et al. Neurokinin-1 (NK-1) receptor is required in Clostridium difficile-induced enteritis. J Clin Invest. 1998;101(8):1547–50.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen X, Kokkotou EG, Mustafa N, et al. Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. J Biol Chem. 2006;281(34):24449–54.CrossRefPubMedGoogle Scholar
  26. 26.
    Ishida Y, Maegawa T, Kondo T, et al. Essential involvement of IFN-gamma in Clostridium difficile toxin A-induced enteritis. J Immunol. 2004;172(5):3018–25.CrossRefPubMedGoogle Scholar
  27. 27.
    McDonald JA, Fuentes S, Schroeter K, et al. Simulating distal gut mucosal and luminal communities using packed-column biofilm reactors and an in vitro chemostat model. J Microbiol Methods. 2015;108:36–44.CrossRefPubMedGoogle Scholar
  28. 28.
    Gloor GB, Hummelen R, Macklaim JM, et al. Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One. 2010;5:e15406.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–4.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Masella AP, Bartram AK, Truszkowski JM, et al. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinf. 2012;13:31.CrossRefGoogle Scholar
  31. 31.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1.CrossRefPubMedGoogle Scholar
  32. 32.
    Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–200.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yilmaz P, Parfrey LW, Yarza P, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl Acid Res. 2014;42:D643–8.CrossRefGoogle Scholar
  35. 35.
    Aitchison J. The statistical analysis of compositional data. New Jersey: Chapman and Hall; 1986.CrossRefGoogle Scholar
  36. 36.
    Lovell D, Pawlowsky-Glahn V, Egozcue JJ, et al. Proportionality: a valid alternative to correlation for relative data. PLoS Comput Biol 2015;11(e):1004075.Google Scholar
  37. 37.
    Fernandes AD, Reid JN, Macklaim JM, et al. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    van den Boogaart K, Tolosana-Delgado R. Analyzing compositional data with R. New York: Springer; 2013.CrossRefGoogle Scholar
  39. 39.
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria. 2015; Available from:
  40. 40.
    Palarea-Albaladejo J, Martín-Fernández JA. zCompositions: R package for multivariate imputation of left-censored data under a compositional approach. Chemometr Intell Lab. 2015;143:85–96.CrossRefGoogle Scholar
  41. 41.
    Rao K, Erb-Downward JR, Walk ST, et al. The systemic inflammatory response to Clostridium difficile infection. PLoS One. 2014;9(3):e92578.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    George RH, Symonds JM, Dimock F, et al. Identification of Clostridium difficile as a cause of pseudomembranous colitis. Br Med J. 1978;1(6114):695.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bartlett JG, Chang TW, Gurwith M, et al. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med. 1978;298(10):531–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Chang TW, Lauermann M, Bartlett JG. Cytotoxicity assay in antibiotic-associated colitis. J Infect Dis. 1979;140(5):765–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Hecht G, Pothoulakis C, LaMont JT, et al. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest. 1988;82(5):1516–24.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Liu TS, Musch MW, Sugi K, et al. Protective role of HSP72 against Clostridium difficile toxin A-induced intestinal epithelial cell dysfunction. Am J Physiol Cell Physiol. 2003;284(4):C1073–82.CrossRefPubMedGoogle Scholar
  47. 47.
    Moore R, Pothoulakis C, LaMont JT, et al. C. difficile toxin A increases intestinal permeability and induces Cl- secretion. Am J Physiol. 1990;259(2 Pt 1):G165–72.PubMedGoogle Scholar
  48. 48.
    Musch MW, Petrof EO, Kojima K, et al. Bacterial superantigen-treated intestinal epithelial cells upregulate heat shock proteins 25 and 72 and are resistant to oxidant cytotoxicity. Infect Immun. 2004;72(6):3187–94.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hirota SA, Iablokov V, Tulk SE, et al. Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure. Infect Immun. 2012;80(12):4474–84.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sanders DS. Mucosal integrity and barrier function in the pathogenesis of early lesions in Crohn’s disease. J Clin Pathol. 2005;58(6):568–72.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sun Z, Wang X, Wallen R, et al. The influence of apoptosis on intestinal barrier integrity in rats. Scand J Gastroenterol. 1998;33(4):415–22.CrossRefPubMedGoogle Scholar
  52. 52.
    Zeissig S, Bojarski C, Buergel N, et al. Downregulation of epithelial apoptosis and barrier repair in active Crohn’s disease by tumour necrosis factor alpha antibody treatment. Gut. 2004;53(9):1295–302.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Castagliuolo I, LaMont JT, Nikulasson ST, et al. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect Immun. 1996;64(12):5225–32.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Castagliuolo I, Riegler MF, Valenick L, et al. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect Immun. 1999;67(1):302–7.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Surawicz CM, McFarland LV, Greenberg RN, et al. The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin Infect Dis. 2000;31(4):1012–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Islam J, Taylor AL, Rao K, et al. The role of the humoral immune response to Clostridium difficile toxins A and B in susceptibility to C. difficile infection: a case-control study. Anaerobe. 2014;27:82–6.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lyerly DM, Saum KE, MacDonald DK, et al. Effects of clostridium difficile toxins given intragastrically to animals. Infect Immun. 1985;47(2):349–52.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Savidge TC, Pan WH, Newman P, et al. Clostridium difficile toxin B is an inflammatory enterotoxin in human intestine. Gastroenterology. 2003;125(2):413–20.CrossRefPubMedGoogle Scholar
  59. 59.
    Kim H, Riley TV, Kim M, et al. Increasing prevalence of toxin A-negative, toxin B-positive isolates of Clostridium difficile in Korea: impact on laboratory diagnosis. J Clin Microbiol. 2008;46(3):1116–7.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Rupnik M, Kato N, Grabnar M, et al. New types of toxin A-negative, toxin B-positive strains among Clostridium difficile isolates from Asia. J Clin Microbiol. 2003;41(3):1118–25.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Shin BM, Kuak EY, Yoo HM, et al. Multicentre study of the prevalence of toxigenic Clostridium difficile in Korea: results of a retrospective study 2000–2005. J Med Microbiol. 2008;57(Pt 6):697–701.CrossRefPubMedGoogle Scholar
  62. 62.
    Cairns MD, Preston MD, Lawley TD, et al. Genomic epidemiology of a protracted hospital outbreak caused by a toxin A-negative clostridium difficile sublineage PCR Ribotype 017 strain in London, England. J Clin Microbiol. 2015;53(10):3141–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Munoz S, Guzman-Rodriguez M, Sun J, et al. Rebooting the Microbiome. Gut Microb. 2016;13:1–11.Google Scholar
  64. 64.
    Wirtz S, Neufert C, Weigmann B, et al. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2(3):541–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Aitchison J, Greenacre M. Biplots of compositional data. J Ry Stat Soc: Ser C (Appl Stat). 2002;51:375–92.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Gastroenterology 2016

Authors and Affiliations

  • Sarah Lynn Martz
    • 1
  • Mabel Guzman-Rodriguez
    • 1
  • Shu-Mei He
    • 1
  • Curtis Noordhof
    • 1
  • David John Hurlbut
    • 2
  • Gregory Brian Gloor
    • 3
  • Christian Carlucci
    • 4
  • Scott Weese
    • 4
  • Emma Allen-Vercoe
    • 4
  • Jun Sun
    • 5
  • Erika Chiong Claud
    • 6
  • Elaine Olga Petrof
    • 1
  1. 1.Division of Infectious Diseases/GI Diseases Research Unit Wing, Department of Medicine, Kingston General HospitalQueen’s UniversityKingstonCanada
  2. 2.Department of Pathology and Molecular MedicineQueen’s UniversityKingstonCanada
  3. 3.Department of BiochemistryUniversity of Western OntarioLondonCanada
  4. 4.Department of Molecular and Cellular BiologyUniversity of GuelphGuelphCanada
  5. 5.Division of Gastroenterology and Hepatology, Department of MedicineUniversity of Illinois at ChicagoChicagoUSA
  6. 6.Departments of Pediatrics and MedicineUniversity of ChicagoChicagoUSA

Personalised recommendations