Advertisement

Journal of Gastroenterology

, Volume 51, Issue 9, pp 853–861 | Cite as

Indole compounds may be promising medicines for ulcerative colitis

  • Shinya Sugimoto
  • Makoto Naganuma
  • Takanori KanaiEmail author
Review

Abstract

Indole compounds are extracted from indigo plants and have been used as blue or purple dyes for hundreds of years. In traditional Chinese medicine, herbal agents in combination with Qing-Dai (also known as indigo naturalis) have been used to treat patients with ulcerative colitis (UC) and to remedy inflammatory conditions. Recent studies have noted that indole compounds can be biosynthesized from tryptophan metabolites produced by various enzymes derived from intestinal microbiota. In addition to their action on indole compounds, the intestinal microbiota produce various tryptophan metabolites that mediate critical functions through distinct pathways and enzymes. Furthermore, some indole compounds, such as indigo and indirubin, act as ligands for the aryl hydrocarbon receptor. This signaling pathway stimulates mucosal type 3 innate lymphoid cells to produce interleukin-22, which induces antimicrobial peptide and tight junction molecule production, suggesting a role for indole compounds during the mucosal healing process. Thus, indole compounds may represent a novel treatment strategy for UC patients. In this review, we describe the origin and function of this indole compound-containing Chinese herb, as well as the drug development of indole compounds.

Keywords

Inflammatory bowel diseases Ulcerative colitis Chinese herbal medicine Aryl hydrocarbon receptor Indole 

Notes

Acknowledgments

We thank the past and present members of the Keio IBD Group for their continued support. We also thank Dr. Kuniki Amano (Sky Clinic, Hiroshima, Japan) for useful suggestions.

Compliance with ethical standards

Conflict of interest

Takanori Kanai received a research grant and lecture fees from Takeda Pharmaceutical Co., Ltd. However, this funding was not related to the generation of this article.

References

  1. 1.
    Kirsner JB. Historical aspects of inflammatory bowel disease. J Clin Gastroenterol. 1988;10:286–97.CrossRefPubMedGoogle Scholar
  2. 2.
    Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med. 2011;365:1713–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Kanai T, Matsuoka K, Naganuma M, et al. Diet, microbiota, and inflammatory bowel disease: lessons from Japanese foods. Korean J Intern Med. 2014;29:409–15.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kim HJ, Hann HJ, Hong SN, et al. Incidence and natural course of inflammatory bowel disease in Korea, 2006–2012: a nationwide population-based study. Inflamm Bowel Dis. 2015;21:623–30.CrossRefPubMedGoogle Scholar
  5. 5.
    Ng SC, Zeng Z, Niewiadomski O, et al. Early course of inflammatory bowel disease in a population-based inception cohort study from 8 countries in Asia and Australia. Gastroenterology. 2016;150(86–95):e3.PubMedGoogle Scholar
  6. 6.
    Annese V, Daperno M, Rutter MD, et al. European evidence based consensus for endoscopy in inflammatory bowel disease. J Crohns Colitis. 2013;7:982–1018.CrossRefPubMedGoogle Scholar
  7. 7.
    Naganuma M, Sakuraba A, Hibi T. Ulcerative colitis: prevention of relapse. Expert Rev Gastroenterol Hepatol. 2013;7:341–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Naganuma M, Hisamatsu T, Matsuoka K, et al. Endoscopic severity predicts long-term prognosis in Crohn’s disease patients with clinical remission. Digestion. 2016;93:66–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Brown SJ, Mayer L. The immune response in inflammatory bowel disease. Am J Gastroenterol. 2007;102:2058–69.CrossRefPubMedGoogle Scholar
  10. 10.
    Liu TC, Stappenbeck TS. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol. 2016;. doi: 10.1146/annurev-pathol-012615-044152 (in press).PubMedPubMedCentralGoogle Scholar
  11. 11.
    Lee D, Albenberg L, Compher C, et al. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology. 2015;148:1087–106.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sheehan D, Moran C, Shanahan F. The microbiota in inflammatory bowel disease. J Gastroenterol. 2015;50:495–507.CrossRefPubMedGoogle Scholar
  13. 13.
    Yurist-Doutsch S, Arrieta MC, Vogt SL, et al. Gastrointestinal microbiota-mediated control of enteric pathogens. Annu Rev Genet. 2014;48:361–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Goldsmith JR, Sartor RB. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol. 2014;49:785–98.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146:1489–99.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Clemente JC, Ursell LK, Parfrey LW, et al. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–70.CrossRefPubMedGoogle Scholar
  17. 17.
    Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37:47–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee KJ, Tack J. Altered intestinal microbiota in irritable bowel syndrome. Neurogastroenterol Motil. 2010;22:493–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21:895–905.CrossRefPubMedGoogle Scholar
  20. 20.
    Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014;63:1513–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Smits LP, Bouter KE, de Vos WM, et al. Therapeutic potential of fecal microbiota transplantation. Gastroenterology. 2013;145:946–53.CrossRefPubMedGoogle Scholar
  22. 22.
    Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15:317–28.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gullett NP, Ruhul Amin AR, Bayraktar S, et al. Cancer prevention with natural compounds. Semin Oncol. 2010;37:258–81.CrossRefPubMedGoogle Scholar
  24. 24.
    Stasiak N, Kukula-Koch W, Glowniak K. Modern industrial and pharmacological applications of indigo dye and its derivatives—a review. Acta Pol Pharm. 2014;71:215–21.PubMedGoogle Scholar
  25. 25.
    Zhang GB, Li QY, Chen QL, et al. Network pharmacology: a new approach for chinese herbal medicine research. Evid Based Complement Alternat Med. 2013;2013:621423.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Fu J, Pang J, Zhao X, et al. The quantitative ideas and methods in assessment of four properties of Chinese medicinal herbs. Cell Biochem Biophys. 2014;71:1307–12.CrossRefGoogle Scholar
  27. 27.
    Sugimoto S, Naganuma M, Kiyohara H, et al. Clinical efficacy and safety of oral Qing-Dai in patients with ulcerative colitis: a single-center open-label prospective study. Digestion. 2016;93:193–201.CrossRefPubMedGoogle Scholar
  28. 28.
    Xiao HT, Peng J, Hu DD, et al. Qing-dai powder promotes recovery of colitis by inhibiting inflammatory responses of colonic macrophages in dextran sulfate sodium-treated mice. Chin Med. 2015;10:29.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lin YK, Leu YL, Huang TH, et al. Anti-inflammatory effects of the extract of indigo naturalis in human neutrophils. J Ethnopharmacol. 2009;125:51–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou D, Chen W, Li X, et al. Evidence-based practice guideline of Chinese herbal medicine for psoriasis vulgaris (Bai Bi). Eur J Integr Med. 2014;6:135–46.CrossRefGoogle Scholar
  31. 31.
    Yuan G, Ke Q, Su X, et al. Qing Dai, a traditional Chinese medicine for the treatment of chronic hemorrhagic radiation proctitis. Chinese-German J Clin Oncol. 2009;8:114–6.CrossRefGoogle Scholar
  32. 32.
    Han R. Highlight on the studies of anticancer drugs derived from plants in China. Stem Cells. 1994;12:53–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Stockinger B, Di Meglio P, Gialitakis M, et al. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol. 2014;32:403–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Shertzer HG, Senft AP. The micronutrient indole-3-carbinol: implications for disease and chemoprevention. Drug metabol Drug interact. 2000;17:159–88.CrossRefPubMedGoogle Scholar
  35. 35.
    Vaas S, Kreft L, Schwarz M, et al. Cooperation of structurally different aryl hydrocarbon receptor agonists and beta-catenin in the regulation of CYP1A expression. Toxicology. 2014;325:31–41.CrossRefPubMedGoogle Scholar
  36. 36.
    Moura-Alves P, Fae K, Houthuys E, et al. AhR sensing of bacterial pigments regulates antibacterial defence. Nature. 2014;512:387–92.CrossRefPubMedGoogle Scholar
  37. 37.
    Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340:1190–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature. 2016;529:307–15.CrossRefPubMedGoogle Scholar
  40. 40.
    Okamoto R, Watanabe M. Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease. J Gastroenterol. 2016;51:11–21.CrossRefPubMedGoogle Scholar
  41. 41.
    Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–41.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Qiu J, Guo X, Chen ZM, et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity. 2013;39:386–99.CrossRefPubMedGoogle Scholar
  44. 44.
    Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–85.CrossRefPubMedGoogle Scholar
  45. 45.
    Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol. 2011;12:21–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Eberl G. Development and evolution of RORgammat+ cells in a microbe’s world. Immunol Rev. 2012;245:177–88.CrossRefPubMedGoogle Scholar
  47. 47.
    Goldberg R, Prescott N, Lord GM, et al. The unusual suspects–innate lymphoid cells as novel therapeutic targets in IBD. Nat Rev Gastroenterol Hepatol. 2015;12:271–83.CrossRefPubMedGoogle Scholar
  48. 48.
    Mizuno S, Mikami Y, Kamada N, et al. Cross-talk between RORgammat+ innate lymphoid cells and intestinal macrophages induces mucosal IL-22 production in Crohn’s disease. Inflamm Bowel Dis. 2014;20:1426–34.CrossRefPubMedGoogle Scholar
  49. 49.
    Kiss EA, Vonarbourg C, Kopfmann S, et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science. 2011;334:1561–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Monteleone I, Rizzo A, Sarra M, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology. 2011;141:237–48, 248.e1.Google Scholar
  51. 51.
    Zelante T, Iannitti RG, Fallarino F, et al. Tryptophan feeding of the IDO1-AhR axis in host-microbial symbiosis. Front Immunol. 2014;5:640.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Veldhoen M, Ferreira C. Influence of nutrient-derived metabolites on lymphocyte immunity. Nat Med. 2015;21:709–18.CrossRefPubMedGoogle Scholar
  53. 53.
    Froslie KF, Jahnsen J, Moum BA, et al. Mucosal healing in inflammatory bowel disease: results from a Norwegian population-based cohort. Gastroenterology. 2007;133:412–22.CrossRefPubMedGoogle Scholar
  54. 54.
    Saigusa K, Matsuoka K, Sugimoto S, et al. Ulcerative colitis endoscopic index of severity is associated with long-term prognosis in ulcerative colitis patients treated with infliximab. Dig Endosc. 2016;. doi: 10.1111/den.12655 (in press).PubMedGoogle Scholar
  55. 55.
    Ke S, Rabson AB, Germino JF, et al. Mechanism of suppression of cytochrome P-450 1A1 expression by tumor necrosis factor-alpha and lipopolysaccharide. J Biol Chem. 2001;276:39638–44.CrossRefPubMedGoogle Scholar
  56. 56.
    Lindemans CA, Calafiore M, Mertelsmann AM, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560–4.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Li Y, Innocentin S, Withers DR, et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell. 2011;147:629–40.CrossRefPubMedGoogle Scholar
  58. 58.
    Di Meglio P, Duarte JH, Ahlfors H, et al. Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity. 2014;40:989–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Xue J, Nguyen DT, Habtezion A. Aryl hydrocarbon receptor regulates pancreatic IL-22 production and protects mice from acute pancreatitis. Gastroenterology. 2012;143:1670–80.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Koning M, Ailabouni R, Gearry RB, et al. Use and predictors of oral complementary and alternative medicine by patients with inflammatory bowel disease: a population-based, case–control study. Inflamm Bowel Dis. 2013;19:767–78.CrossRefPubMedGoogle Scholar
  61. 61.
    Weizman AV, Ahn E, Thanabalan R, et al. Characterisation of complementary and alternative medicine use and its impact on medication adherence in inflammatory bowel disease. Aliment Pharmacol Ther. 2012;35:342–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Langmead L, Feakins RM, Goldthorpe S, et al. Randomized, double-blind, placebo-controlled trial of oral aloe vera gel for active ulcerative colitis. Aliment Pharmacol Ther. 2004;19:739–47.CrossRefPubMedGoogle Scholar
  63. 63.
    Ben-Arye E, Goldin E, Wengrower D, et al. Wheat grass juice in the treatment of active distal ulcerative colitis: a randomized double-blind placebo-controlled trial. Scand J Gastroenterol. 2002;37:444–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Sandborn WJ, Targan SR, Byers VS, et al. Andrographis paniculata extract (HMPL-004) for active ulcerative colitis. Am J Gastroenterol. 2013;108:90–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Fukunaga K, Hida N, Ohnishi K, et al. A suppository Chinese medicine (xilei-san) for refractory ulcerative proctitis: a pilot clinical trial. Digestion. 2007;75:146–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Fukunaga K, Ohda Y, Hida N, et al. Placebo controlled evaluation of Xilei San, a herbal preparation in patients with intractable ulcerative proctitis. J Gastroenterol Hepatol. 2012;27:1808–15.CrossRefPubMedGoogle Scholar
  67. 67.
    Tang T, Targan SR, Li ZS, et al. Randomised clinical trial: herbal extract HMPL-004 in active ulcerative colitis—a double-blind comparison with sustained release mesalazine. Aliment Pharmacol Ther. 2011;33:194–202.CrossRefPubMedGoogle Scholar
  68. 68.
    Gupta I, Parihar A, Malhotra P, et al. Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med. 2001;67:391–5.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang F, Li Y, Xu F, et al. Comparison of Xilei-san, a Chinese herbal medicine, and dexamethasone in mild/moderate ulcerative proctitis: a double-blind randomized clinical trial. J Altern Complement Med. 2013;19:838–42.CrossRefPubMedGoogle Scholar
  70. 70.
    Biedermann L, Mwinyi J, Scharl M, et al. Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis—an open pilot study. J Crohns Colitis. 2013;7:271–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Huber R, Ditfurth AV, Amann F, et al. Tormentil for active ulcerative colitis: an open-label, dose-escalating study. J Clin Gastroenterol. 2007;41:834–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Gong Y, Zha Q, Li L, et al. Efficacy and safety of Fufangkushen colon-coated capsule in the treatment of ulcerative colitis compared with mesalazine: a double-blinded and randomized study. J Ethnopharmacol. 2012;141:592–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Chen ZS, Nie ZW, Sun QL. Clinical study in treating intractable ulcerative colitis with traditional Chinese medicine. Chin J Integr Med. 1994;14:400–2.Google Scholar
  74. 74.
    Hanai H, Iida T, Takeuchi K, et al. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol. 2006;4:1502–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Fernandez-Banares F, Hinojosa J, Sanchez-Lombrana JL, et al. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Spanish Group for the Study of Crohn’s Disease and Ulcerative Colitis (GETECCU). Am J Gastroenterol. 1999;94:427–33.CrossRefPubMedGoogle Scholar
  76. 76.
    Langhorst J, Varnhagen I, Schneider SB, et al. Randomised clinical trial: a herbal preparation of myrrh, chamomile and coffee charcoal compared with mesalazine in maintaining remission in ulcerative colitis—a double-blind, double-dummy study. Aliment Pharmacol Ther. 2013;38:490–500.CrossRefPubMedGoogle Scholar
  77. 77.
    Greenfield SM, Green AT, Teare JP, et al. A randomized controlled study of evening primrose oil and fish oil in ulcerative colitis. Aliment Pharmacol Ther. 1993;7:159–66.CrossRefPubMedGoogle Scholar
  78. 78.
    Kanauchi O, Mitsuyama K, Homma T, et al. Treatment of ulcerative colitis patients by long-term administration of germinated barley foodstuff: multi-center open trial. Int J Mol Med. 2003;12:701–4.PubMedGoogle Scholar
  79. 79.
    Langhorst J, Wulfert H, Lauche R, et al. Systematic review of complementary and alternative medicine treatments in inflammatory bowel diseases. J Crohns Colitis. 2015;9:86–106.CrossRefPubMedGoogle Scholar
  80. 80.
    Teng L, Xin HW, Blix HS, et al. Review of the use of defined daily dose concept in drug utilisation research in China. Pharmacoepidemiol Drug Saf. 2012;21:1118–24.CrossRefPubMedGoogle Scholar
  81. 81.
    Ferber KH. Toxicology of indigo. A review. J Environ Pathol Toxicol Oncol. 1987;7:73–83.PubMedGoogle Scholar
  82. 82.
    Suzuki H, Kaneko T, Mizokami Y, et al. Therapeutic efficacy of the Qing Dai in patients with intractable ulcerative colitis. World J Gastroenterol. 2013;19:2718–22.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Schroeder KW, Tremaine WJ, Ilstrup DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med. 1987;317:1625–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Lichtiger S, Present DH, Kornbluth A, et al. Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med. 1994;330:1841–5.CrossRefPubMedGoogle Scholar
  85. 85.
    Glatigny S, Blaton MA, Mencher SK, et al. Treatment of collagen-induced arthritis by Natura-alpha via regulation of Th-1/Th-17 responses. Eur J Immunol. 2010;40:460–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Liang Y, Xie P, Chau F. Chromatographic fingerprinting and related chemometric techniques for quality control of traditional Chinese medicines. J Sep Sci. 2010;33:410–21.CrossRefPubMedGoogle Scholar
  87. 87.
    Huber S, Gagliani N, Zenewicz LA, et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature. 2012;491:259–63.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med. 2015;21:698–708.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Huang M, Lin HS, Lee YS, et al. Evaluation of meisoindigo, an indirubin derivative: in vitro antileukemic activity and in vivo pharmacokinetics. Int J Oncol. 2014;45:1724–34.PubMedGoogle Scholar
  90. 90.
    Saito R, Tamura M, Matsui H, et al. Qing Dai attenuates nonsteroidal anti-inflammatory drug-induced mitochondrial reactive oxygen species in gastrointestinal epithelial cells. J Clin Biochem Nutr. 2015;56:8–14.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Gastroenterology 2016

Authors and Affiliations

  • Shinya Sugimoto
    • 1
  • Makoto Naganuma
    • 1
  • Takanori Kanai
    • 1
    Email author
  1. 1.Division of Gastroenterology and Hepatology, Department of Internal MedicineKeio University School of MedicineTokyoJapan

Personalised recommendations