Journal of Gastroenterology

, Volume 51, Issue 11, pp 1073–1080 | Cite as

Antiviral effects of anti-HBs immunoglobulin and vaccine on HBs antigen seroclearance for chronic hepatitis B infection

  • Masataka Tsuge
  • Nobuhiko Hiraga
  • Takuro Uchida
  • Hiromi Kan
  • Eisuke Miyaki
  • Keiichi Masaki
  • Atsushi Ono
  • Takashi Nakahara
  • Hiromi Abe-Chayama
  • Yizhou Zhang
  • Makokha Grace Naswa
  • Tomokazu Kawaoka
  • Daiki Miki
  • Michio Imamura
  • Yoshiiku Kawakami
  • Hiroshi Aikata
  • Hidenori Ochi
  • C. Nelson Hayes
  • Kazuaki Chayama
Original Article—Liver, Pancreas, and Biliary Tract

Abstract

Background and aims

Interferon and nucleotide/nucleoside analogues are the main treatments for chronic hepatitis B. These drugs effectively reduce serum hepatitis B virus (HBV) DNA titers but fail to sufficiently reduce hepatitis B surface antigen (HBsAg) levels. Following the recent identification of sodium taurocholate cotransporting polypeptide as a receptor for HBV entry, inhibition of HBV entry has become an attractive therapeutic target for chronic hepatitis B treatment. We therefore evaluated the antiviral effects of antibody to HBsAg (anti-HBs) immunoglobulin (HBIG), which can inhibit HBV entry, by in an vivo study and a clinical trial.

Methods

In the in vivo study, HBV-infected mice were generated from human hepatocyte chimeric mice and treated with HBIG. A clinical trial evaluating HBIG therapy in patients was also performed.

Results

In the mouse study, HBV DNA titers were reduced and serum HBsAg titers decreased to undetectable levels following high-dose HBIG injection. On the basis of this result, eight chronic hepatitis B patients, who had received long-term nucleotide analogue treatment, were treated with monthly HBIG injections as an additional treatment. After 1 year of treatment, an HBsAg level reduction of more than 1 log IU/mL was observed in four patients, and three patients became anti-HBs positive. No adverse events occurred during HBIG therapy.

Conclusion

These results suggest that monthly HBIG injection might benefit patients with chronic hepatitis B whose HBsAg titer becomes lower following long-term nucleotide/nucleoside analogue treatment.

Keywords

Chronic hepatitis B Human hepatocyte chimeric mouse Chronic hepatitis B Anti-HBs immunoglobulin Hepatitis B surface antigen loss 

Abbreviations

Anti-HBs

Antibody to hepatitis B surface antigen

cccDNA

Covalently closed circular DNA

HBeAg

Hepatitis B e antigen

HBIG

Antibody to hepatitis B surface antigen immunoglobulin

HBsAg

Hepatitis B surface antigen

HBV

Hepatitis B virus

NA

Nucleotide/nucleoside analogue

NTCP

Sodium taurocholate cotransporting polypeptide

References

  1. 1.
    Bruix J, Llovet JM. Hepatitis B virus and hepatocellular carcinoma. J Hepatol. 2003;39(Suppl 1):S59–63.CrossRefPubMedGoogle Scholar
  2. 2.
    Conjeevaram HS, Lok AS. Management of chronic hepatitis B. J Hepatol. 2003;38(Suppl 1):S90–103.CrossRefPubMedGoogle Scholar
  3. 3.
    Lee YS, Suh DJ, Lim YS, et al. Increased risk of adefovir resistance in patients with lamivudine-resistant chronic hepatitis B after 48 weeks of adefovir dipivoxil monotherapy. Hepatology. 2006;43:1385–91.CrossRefPubMedGoogle Scholar
  4. 4.
    Suzuki Y, Kumada H, Ikeda K, et al. Histological changes in liver biopsies after one year of lamivudine treatment in patients with chronic hepatitis B infection. J Hepatol. 1999;30:743–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Belloni L, Allweiss L, Guerrieri F, et al. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Investig. 2012;122:529–37.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Belloni L, Pollicino T, De Nicola F, et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc Natl Acad Sci U S A. 2009;106:19975–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brechot C, Gozuacik D, Murakami Y, et al. Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Semin Cancer Biol. 2000;10:211–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Murakami Y, Saigo K, Takashima H, et al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut. 2005;54:1162–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nagaya T, Nakamura T, Tokino T, et al. The mode of hepatitis B virus DNA integration in chromosomes of human hepatocellular carcinoma. Genes Dev. 1987;1:773–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Yaginuma K, Kobayashi H, Kobayashi M, et al. Multiple integration site of hepatitis B virus DNA in hepatocellular carcinoma and chronic active hepatitis tissues from children. J Virol. 1987;61:1808–13.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Lau GK, Piratvisuth T, Luo KX, et al. Peginterferon alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N Engl J Med. 2005;352:2682–95.CrossRefPubMedGoogle Scholar
  12. 12.
    Marcellin P, Lau GK, Bonino F, et al. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N Engl J Med. 2004;351:1206–17.CrossRefPubMedGoogle Scholar
  13. 13.
    Piccolo P, Lenci I, Demelia L, et al. A randomized controlled trial of pegylated interferon-alpha2a plus adefovir dipivoxil for hepatitis B e antigen-negative chronic hepatitis B. Antivir Ther. 2009;14:1165–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Takkenberg B, Terpstra V, Zaaijer H, et al. Intrahepatic response markers in chronic hepatitis B patients treated with peginterferon alpha-2a and adefovir. J Gastroenterol Hepatol. 2011;26:1527–35.CrossRefPubMedGoogle Scholar
  15. 15.
    Yan H, Zhong G, Xu G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife. 2012;1:e00049.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Petersen J, Dandri M, Mier W, et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol. 2008;26:335–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Ni Y, Lempp FA, Mehrle S, et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology. 2014;146:1070–83.CrossRefPubMedGoogle Scholar
  18. 18.
    Warner N, Locarnini S. The new front-line in hepatitis B/D research: identification and blocking of a functional receptor. Hepatology. 2013;58:9–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Krugman S, Giles JP, Hammond J. Viral hepatitis, type B (MS-2 strain) prevention with specific hepatitis B immune serum globulin. JAMA. 1971;218:1665–70.CrossRefPubMedGoogle Scholar
  20. 20.
    Szmuness W, Prince AM, Goodman M, et al. Hepatitis B immune serum globulin in prevention of nonparenterally transmitted hepatitis B. N Engl J Med. 1974;290:701–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Tateno C, Yoshizane Y, Saito N, et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol. 2004;165:901–12.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tsuge M, Hiraga N, Takaishi H, et al. Infection of human hepatocyte chimeric mouse with genetically engineered hepatitis B virus. Hepatology. 2005;42:1046–54.CrossRefPubMedGoogle Scholar
  23. 23.
    Reed WD, Eddleston AL, Cullens H, et al. Infusion of hepatitis-B antibody in antigen-positive active chronic hepatitis. Lancet. 1973;2:1347–51.CrossRefPubMedGoogle Scholar
  24. 24.
    Itoh Y, Takai E, Ohnuma H, et al. A synthetic peptide vaccine involving the product of the pre-S(2) region of hepatitis B virus DNA: protective efficacy in chimpanzees. Proc Natl Acad Sci U S A. 1986;83:9174–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Iwarson S, Tabor E, Thomas HC, et al. Neutralization of hepatitis B virus infectivity by a murine monoclonal antibody: an experimental study in the chimpanzee. J Med Virol. 1985;16:89–96.CrossRefPubMedGoogle Scholar
  26. 26.
    McAleer WJ, Buynak EB, Maigetter RZ, et al. Human hepatitis B vaccine from recombinant yeast. Nature. 1984;307:178–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Neurath AR, Kent SB, Strick N, et al. Genetic restriction of immune responsiveness to synthetic peptides corresponding to sequences in the pre-S region of the hepatitis B virus (HBV) envelope gene. J Med Virol. 1985;17:119–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Ogata N, Ostberg L, Ehrlich PH, et al. Markedly prolonged incubation period of hepatitis B in a chimpanzee passively immunized with a human monoclonal antibody to the a determinant of hepatitis B surface antigen. Proc Natl Acad Sci U S A. 1993;90:3014–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Celis E, Abraham KG, Miller RW. Modulation of the immunological response to hepatitis B virus by antibodies. Hepatology. 1987;7:563–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Buster EH, Flink HJ, Cakaloglu Y, et al. Sustained HBeAg and HBsAg loss after long-term follow-up of HBeAg-positive patients treated with peginterferon alpha-2b. Gastroenterology. 2008;135:459–67.CrossRefPubMedGoogle Scholar
  31. 31.
    Chang TT, Lai CL, Kew Yoon S, et al. Entecavir treatment for up to 5 years in patients with hepatitis B e antigen-positive chronic hepatitis B. Hepatology. 2010;51:422–30.CrossRefPubMedGoogle Scholar
  32. 32.
    Chu CM, Liaw YF. HBsAg seroclearance in asymptomatic carriers of high endemic areas: appreciably high rates during a long-term follow-up. Hepatology. 2007;45:1187–92.CrossRefPubMedGoogle Scholar
  33. 33.
    Gish RG, Chang TT, Lai CL, et al. Loss of HBsAg antigen during treatment with entecavir or lamivudine in nucleoside-naive HBeAg-positive patients with chronic hepatitis B. J Viral Hepat. 2010;17:16–22.CrossRefPubMedGoogle Scholar
  34. 34.
    Heathcote EJ, Marcellin P, Buti M, et al. Three-year efficacy and safety of tenofovir disoproxil fumarate treatment for chronic hepatitis B. Gastroenterology. 2011;140:132–43.CrossRefPubMedGoogle Scholar
  35. 35.
    Zoutendijk R, Reijnders JG, Brown A, et al. Entecavir treatment for chronic hepatitis B: adaptation is not needed for the majority of naive patients with a partial virological response. Hepatology. 2011;54:443–51.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Gastroenterology 2016

Authors and Affiliations

  • Masataka Tsuge
    • 1
    • 2
    • 3
  • Nobuhiko Hiraga
    • 1
    • 3
  • Takuro Uchida
    • 1
    • 3
  • Hiromi Kan
    • 1
    • 3
  • Eisuke Miyaki
    • 1
    • 3
  • Keiichi Masaki
    • 1
    • 3
  • Atsushi Ono
    • 1
    • 3
  • Takashi Nakahara
    • 1
    • 3
  • Hiromi Abe-Chayama
    • 1
    • 3
  • Yizhou Zhang
    • 1
    • 3
  • Makokha Grace Naswa
    • 1
    • 3
  • Tomokazu Kawaoka
    • 1
    • 3
  • Daiki Miki
    • 1
    • 3
    • 4
  • Michio Imamura
    • 1
    • 3
  • Yoshiiku Kawakami
    • 1
    • 3
  • Hiroshi Aikata
    • 1
    • 3
  • Hidenori Ochi
    • 1
    • 3
  • C. Nelson Hayes
    • 1
    • 3
  • Kazuaki Chayama
    • 1
    • 3
    • 4
  1. 1.Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical and Health ScienceHiroshima UniversityHiroshimaJapan
  2. 2.Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
  3. 3.Liver Research Project CenterHiroshima UniversityHiroshimaJapan
  4. 4.Laboratory for Liver Diseases, SNP Research CenterInstitute of Physical and Chemical Research (RIKEN)HiroshimaJapan

Personalised recommendations