Advertisement

Journal of Gastroenterology

, Volume 51, Issue 5, pp 434–446 | Cite as

Fecal calprotectin: its scope and utility in the management of inflammatory bowel disease

  • Shapur Ikhtaire
  • Mohammad Sharif Shajib
  • Walter Reinisch
  • Waliul Islam Khan
Review

Abstract

Gastrointestinal symptoms such as abdominal pain, dyspepsia, and diarrhea are relatively nonspecific and a common cause for seeking medical attention. To date, it is challenging for physicians to differentiate between functional and organic gastrointestinal conditions and it involves the use of serological and endoscopic techniques. Therefore, a simple, noninvasive, inexpensive, and effective test would be of utmost importance in clinical practice. Fecal calprotectin (FC) is considered to be a reliable biomarker that fulfills these criteria. FC can detect intestinal inflammation, and its level correlates well with macroscopic and histological inflammation as detected by colonoscopy and biopsies, respectively. FC has a decent diagnostic accuracy for differentiating organic diseases and functional disorders because of its excellent negative predictive value in ruling out inflammatory bowel disease (IBD) in symptomatic undiagnosed patients. There is accumulating evidence that FC has been effectively used to monitor the natural course of IBD, to predict relapse, and to see the response to treatment. This novel biomarker has the ability to assess mucosal healing (MH), which is a therapeutic goal in IBD management. A literature search was carried out using PubMed with the keywords FC, IBD, intestinal inflammation, and MH. In our review, we provide an overview of the utility and scope of FC as a biomarker in patients with IBD as well as undiagnosed patients with lower gastrointestinal symptoms.

Keywords

Fecal calprotectin Inflammatory bowel disease Biomarker Mucosal healing 

Notes

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (CIHR).

References

  1. 1.
    Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology. 2011;140(6):1704–12e1702.Google Scholar
  2. 2.
    Chassaing B, Darfeuille-Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1720–28e1723.Google Scholar
  3. 3.
    Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology. 2011;140(6):1729–37.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kaser A, Blumberg RS. Autophagy, microbial sensing, endoplasmic reticulum stress, and epithelial function in inflammatory bowel disease. Gastroenterology. 2011;140(6):1738–47e1732.Google Scholar
  5. 5.
    Lakatos PL. Recent trends in the epidemiology of inflammatory bowel diseases: up or down? World J Gastroenterol. 2006;12(38):6102–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gismera CS, Aladren BS. Inflammatory bowel diseases: a disease (s) of modern times? Is incidence still increasing? World J Gastroenterol. 2008;14(36):5491–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Benchimol EI, Guttmann A, Griffiths AM, et al. Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: evidence from health administrative data. Gut. 2009;58(11):1490–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Vermeire S, Van Assche G, Rutgeerts P. Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut. 2006;55:426–31.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nielsen OH, Vainer B, Madsen SM, et al. Established and emerging biological activity markers of inflammatory bowel disease. Am J Gastroenterol. 2000;95:359–67.PubMedGoogle Scholar
  10. 10.
    Bjerke K, Halstensen TS, Jahnsen F, et al. Distribution of macrophages and granulocytes expressing L1 protein (calprotectin) in human Peyer’s patches compared with normal ileal lamina propria and mesenteric lymph nodes. Gut. 1993;34:1357–63.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tibble JA, Bjarnason I. Non-invasive investigations of inflammatory bowel disease. World J Gastroenterol. 2001;7:460–5.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Fagerhol MK, Dale I, Anderson I. Release and quantification of leukocyte derived protein (L1). Scand J Haematol. 1980;24:393–8.CrossRefGoogle Scholar
  13. 13.
    Frosch M, Metze D, Foell D, et al. Early activation of cutaneous vessels and epithelial cells is characteristic of acute systemic onset juvenile idiopathic arthritis. Exp Dermatol. 2005;14:259–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Foell D, Frosch M, Sorg C, et al. Phagocyte-specific calcium binding S100 proteins as clinical laboratory markers of inflammation. Clin Chim Acta. 2004;344:37–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Poullis A, Foster R, Northfield TC, et al. Review article: faecal markers in the assessment of activity in inflammatory bowel disease. Aliment Pharmacol Ther. 2002;16:675–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Taghvaei T, Maleki I, Nagshvar F, et al. FC and ulcerative colitis endoscopic activity index as indicators of mucosal healing in ulcerative colitis. Intern Emerg Med. 2015;10:321–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Judd TA, Day AS, Lemberg DA, et al. Update of fecal markers of inflammation in inflammatory bowel disease. J Gastroenterol Hepatol. 2011;26:1493–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Voganatsi A, Panyutich A, Miyasaki KT, et al. Mechanism of extracellular release of human neutrophil calprotectin complex. J Leukoc Biol. 2001;70:130–4.PubMedGoogle Scholar
  19. 19.
    Rammes A, Roth J, Goebeler M, et al. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem. 1997;272:9496–502.PubMedCrossRefGoogle Scholar
  20. 20.
    Vermeire S, Van Assche G, Rutgeerts P. C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis. 2004;10:661–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Vermeire S, Van Assche G, Rutgeerts P. The role of C-reactive protein as an inflammatory marker in gastrointestinal diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2:580–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Roseth AG, Schmidt PN, Fagerhol MK. Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand J Gastroenterol. 1999;34:50–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Tibble J, Teahon K, Thjodleifsson B, et al. A simple method for assessing intestinal inflammation in Crohn’s disease. Gut. 2000;47:506–13.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gaya DR, Lyon TD, Duncan A, et al. Faecal calprotectin in the assessment of Crohn’s disease activity. Q J Med. 2005;98:435–41.CrossRefGoogle Scholar
  25. 25.
    Reinisch W, Panes J, Page K, et al. Discrepancy between fecal biomarkers and their intestinal gene expression in ulcerative colitis: results from an anti-il-13 antibody study. Gastroenterology. 2014;146(5):S-586.Google Scholar
  26. 26.
    Bjarnason I, Sherwood R. FC: a significant step in the noninvasive assessment of intestinal inflammation. J Pediatr Gastrenterol Nutr. 2001;33:11–3.CrossRefGoogle Scholar
  27. 27.
    Bunn SK, Bisset WM, Main MJ, et al. FC: validation as a noninvasive measure of bowel inflammation in childhood inflammatory bowel disease. J Pediatr Gastrenterol Nutr. 2001;33:14–22.CrossRefGoogle Scholar
  28. 28.
    Summerton CB, Longlands MG, Wiener K, et al. Faecal calprotectin: a marker of inflammation throughout the intestinal tract. Eur J Gastroenterol Hepatol. 2002;14:841–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Roseth AG, Fagerhol MK, Aadland E, et al. Assessment of the neutrophil dominating protein calprotectin in feces. A methodologic study. Scand J Gastroenterol. 1992;27:793–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Fagerberg UL, Loof L, Merzoug RD, et al. FC levels in healthy children studied with an improved assay. J Pediatr Gastrenterol Nutr. 2003;37:468–72.CrossRefGoogle Scholar
  31. 31.
    Abildtrup M, Kingsley GH, Scott DL. Calprotectin as a biomarker for rheumatoid arthritis: a systematic review. J Rheumatol. 2015;42:760–70.PubMedCrossRefGoogle Scholar
  32. 32.
    Meuwis MA, Vernier-Massouille G, Grimaud JC, et al. Serum calprotectin as a biomarker for Crohn’s disease. J Crohns Colitis. 2013;7:e678–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Dhaliwal A, Zeino Z, Tomkins C, et al. Utility of faecal calprotectin in inflammatory bowel disease (IBD): what cut-offs should we apply? Frontline Gastroenterol. 2015;6(1):14–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lasson A, Stotzer PO, Ohman L, et al. The intraindividual variability of faecal calprotectin: a prospective study in patients with active ulcerative colitis. J Crohns Colitis. 2015;9(1):26–32.PubMedGoogle Scholar
  35. 35.
    Sherwood RA. Faecal markers of gastrointestinal inflammation. J Clin Pathol. 2012;65:981–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Labaere D, Smismans A, Olmen AV, et al. Comparison of six different calprotectin assays for the assessment of inflammatory bowel disease. United Eur Gastroenterol J. 2014;2(1):30–7.CrossRefGoogle Scholar
  37. 37.
    Inoue K, Aomatsu T, Yoden A, et al. Usefulness of a novel and rapid assay system for FC in pediatric patients with inflammatory bowel diseases. J Gastroenterol Hepatol. 2014;29:1406–12.PubMedCrossRefGoogle Scholar
  38. 38.
    Angriman I, Scarpa M, D’Inca R, et al. Enzymes in feces: useful markers of chronic inflammatory bowel disease. Clin Chim Acta. 2007;381:63–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Shastri Y, Povse N, Stein J. Prospective comparative study for new rapid bedside FC test with an established ELISA to assess intestinal inflammation. Clin Lab. 2009;55:53–5.PubMedGoogle Scholar
  40. 40.
    Coorevits L, Baert FJ, Vanpoucke HJ. Faecal calprotectin: comparative study of the Quantum Blue rapid test and an established ELISA method. Clin Chem Lab Med. 2013;51(4):825–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Verstergaard TA, Nielsen SL, Dahlerup JF, et al. FC: assessment of a rapid test. Scand J Clin Lab Invest. 2008;68:343–7.CrossRefGoogle Scholar
  42. 42.
    Otten CM, Kok L, Witteman BJ, et al. Diagnostic performance of rapid tests for detection of FC and lactoferrin and their ability to discriminate inflammatory from irritable bowel syndrome. Clin Chem Lab Med. 2008;46:1275–80.PubMedCrossRefGoogle Scholar
  43. 43.
    Damms A, Bischoff SC. Validation and clinical significance of a new calprotectin rapid test for the diagnosis of gastrointestinal diseases. Int J Colorectal Dis. 2008;23:985–92.PubMedCrossRefGoogle Scholar
  44. 44.
    Lobatón T, Rodríguez-Moranta F, Lopez A, et al. A new rapid quantitative test for FC predicts endoscopic activity in ulcerative colitis. Inflamm Bowel Dis. 2013;19(5):1034–42.PubMedCrossRefGoogle Scholar
  45. 45.
    Lehmann FS, Burri E, Beglinger C. The role and utility of faecal markers in inflammatory bowel disease. Ther Adv Gastroenterol. 2015;8(1):23–36.CrossRefGoogle Scholar
  46. 46.
    Smith LA, Gaya DR. Utility of faecal calprotectin analysis in adult inflammatory bowel disease. World J Gastroenterol. 2012;18(46):6782–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gisbert JP, McNicholl AG. Questions and answers on the role of faecal calprotectin as a biological marker in inflammatory bowel disease. Dig Liver Dis. 2009;41:56–66.PubMedCrossRefGoogle Scholar
  48. 48.
    Kapel N, Campeotto F, Kalach N, et al. Faecal calprotectin in term and preterm neonates. J Pediatr Gastrenterol Nutr. 2010;51(5):542–7.CrossRefGoogle Scholar
  49. 49.
    Von Roon AC, Karamountzos L, Purkayastha S, et al. Diagnostic precision of FC for inflammatory bowel disease and colorectal malignancy. Am J Gastroenterol. 2007;102:803–13.CrossRefGoogle Scholar
  50. 50.
    Mosli MH, Zou G, Garg SK, et al. C-reactive protein, FC, and stool lactoferrin for detection of endoscopic activity in symptomatic inflammatory bowel disease patients: a systematic review and meta-analysis. Am J Gastroenterol. 2015;110:802–19.PubMedCrossRefGoogle Scholar
  51. 51.
    Lin JF, Chen JM, Zuo JH, et al. Meta-analysis: FC for assessment of inflammatory bowel disease activity. Inflamm Bowel Dis. 2014;20:1407–15.PubMedCrossRefGoogle Scholar
  52. 52.
    Nancey S, Boschetti G, Moussata D, et al. Neopterin is a novel reliable fecal marker as accurate as calprotectin for predicting endoscopic disease activity in patients with inflammatory bowel diseases. Inflamm Bowel Dis. 2013;19:1043–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Tibble JA, Sigthorsson G, Bridger S, et al. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology. 2000;119:15–22.PubMedCrossRefGoogle Scholar
  54. 54.
    Husebye E, Ton H, Johne B. Biological variability of FC in patients referred for colonoscopy without colonic inflammation or neoplasm. Am J Gastroenterol. 2001;96:2683–7.PubMedGoogle Scholar
  55. 55.
    Poullis A, Foster R, Shetty A, et al. Bowel inflammation as measured by FC: a link between lifestyle factors and colorectal cancer risk. Cancer Epidemiol Biomark Prev. 2004;13:279–84.CrossRefGoogle Scholar
  56. 56.
    Dobrzanski C, Pedersen N, Hansen VV, et al. P483. Faecal calprotectin exhibits diurnal variation in inflammatory bowel disease patients but is not affected by time of day. J Crohns Colitis. 2014;S268.Google Scholar
  57. 57.
    Gibbs J, Ince L, Matthews L, et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med. 2014;20(8):919–26.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Foster R, Bjarnason I, Roseth AG, et al. Alcohol misuse causes a reversible inflammatory enteropathy with increased intestinal permeability. Alcohol. 1995;30:C5.2.Google Scholar
  59. 59.
    Tibble JA, Sigthorsson G, Foster R, et al. High prevalence of NSAID enteropathy as shown by a simple faecal test. Gut. 1999;45:362–6.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Poullis A, Foster R, Mendall MA. Proton pump inhibitors are associated with elevation of faecal calprotectin and may affect specificity. Eur J Gastroenterol Hepatol. 2003;15:573–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Meucci G, D’Inca R, Maieron R, et al. Diagnostic value of faecal calprotectin in unselected outpatients referred for colonoscopy: a multicenter prospective study. Dig Liver Dis. 2010;42(3):191–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Tibble JA, Sigthorsson G, Foster R, et al. Use of surrogate markers of inflammation and Rome criteria to distinguish organic from nonorganic intestinal disease. Gastroenterology. 2002;123(2):450–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Roseth AG. Determination of faecal calprotectin, a novel marker of organic gastrointestinal disorders. Dig Liver Dis. 2003;35:607–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Konikoff MR, Denson LA. Role of FC as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:524–34.PubMedCrossRefGoogle Scholar
  65. 65.
    Van Rheenen P, Van de Vijver E, Fiddler V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ. 2010;341:c3369.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Chang MH, Chou JW, Chen SM, et al. Faecal calprotectin as a novel biomarker for differentiating between inflammatory bowel disease and irritable bowel syndrome. Mol Med Rep. 2014;10(1):522–6.PubMedGoogle Scholar
  67. 67.
    Henderson P, Anderson N, Wilson D. The diagnostic accuracy of FC during the investigation of suspected pediatric inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol. 2014;109:637–45.PubMedCrossRefGoogle Scholar
  68. 68.
    Vatn MH. Natural history and complications of IBD. Curr Gastroenterol Rep. 2009;11(6):481–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Langhorst J, Elsenbruch S, Koelzer J, et al. Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am J Gastroenterol. 2008;103(1):162–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Best WR, Becktel JM, Singleton JW, et al. Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology. 1976;70(3):439–44.PubMedGoogle Scholar
  71. 71.
    Harvey RF, Bradshaw JM. A simple index of Crohn’s-disease activity. Lancet. 1980;1(8167):514.PubMedCrossRefGoogle Scholar
  72. 72.
    Denis MA, Reenaers C, Fontaine F, et al. Assessment of endoscopic activity index and biological inflammatory markers in clinically active Crohn’s disease with normal C-reactive protein serum level. Inflamm Bowel Dis. 2007;13(9):1100–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Xiang JY, Ouyang Q, Li GD, et al. Clinical value of FC in determining disease activity of ulcerative colitis. World J Gastroenterol. 2008;14(1):53–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Jones J, Loftus EV Jr, Panaccione R, et al. Relationships between disease activity and serum and fecal biomarkers in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2008;6(11):1218–24.PubMedCrossRefGoogle Scholar
  75. 75.
    Schoepfer AM, Beglinger C, Straumann A, et al. FC correlates more closely with the Simple Endoscopic Score for Crohn’s disease (SES-CD) than CRP, blood leukocytes, and the CDAI. Am J Gastroenterol. 2010;105(1):162–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Ricanek P, Brackmann S, Perminow G, et al.; IBSEN II Study Group. Evaluation of disease activity in IBD at the time of diagnosis by the use of clinical, biochemical and fecal biomarkers. Scand J Gastroenterol. 2011;46(9):1081–91.Google Scholar
  77. 77.
    Stange EF, Travis SP, Vermeire S, et al.; European Crohn’s and Colitis Organisation (ECCO). European evidence-based Consensus on the diagnosis and management of ulcerative colitis: definitions and diagnosis. J Crohns Colitis. 2008;2(1):1–23.Google Scholar
  78. 78.
    Van Assche G, Dignass A, Panes J, et al.; European Crohn’s and Colitis Organisation (ECCO). The second European evidence-based Consensus on the diagnosis and management of Crohn’s disease: definitions and diagnosis. J Crohns Colitis. 2010;4(1):7–27.Google Scholar
  79. 79.
    Bunn SK, Bisset W, Main M, et al. FC as a measure of disease activity in childhood inflammatory bowel disease. J Pediatr Gastrenterol Nutr. 2001;32:171–7.CrossRefGoogle Scholar
  80. 80.
    Canani R, Terrin G, Rapacciuolo L, et al. Faecal calprotectin as reliable non-invasive marker to assess the severity of mucosal inflammation in children with inflammatory bowel disease. Dig Liver Dis. 2008;40:547–53.PubMedCrossRefGoogle Scholar
  81. 81.
    Fagerberg U, Loof L, Myrdal U, et al. Colorectal inflammation is well predicted by FC in children with gastrointestinal symptoms. J Pediatr Gastrenterol Nutr. 2005;40:450–5.CrossRefGoogle Scholar
  82. 82.
    Limburg PJ, Ahlquist DA, Sandborn WJ, et al. FC levels predict colorectal inflammation among patients with chronic diarrhea referred for colonoscopy. Am J Gastroenterol. 2000;95:2831–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Costa F, Mumolo MG, Bellini M, et al. Role of faecal calprotectin as non-invasive marker of intestinal inflammation. Dig Liver Dis. 2003;35:642–7.PubMedCrossRefGoogle Scholar
  84. 84.
    D’Inca R, Dal Pont E, Di Leo V, et al. Calprotectin and lactoferrin in the assessment of intestinal inflammation and organic disease. Int J Colorectal Dis. 2007;22:429–37.PubMedCrossRefGoogle Scholar
  85. 85.
    Sipponen T, Kolho KL. Faecal calprotectin in children with clinically quiescent inflammatory bowel disease. Scand J Gastroenterol. 2010;45(7–8):872–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Tibble JA, Bjarnason I. FC as an index of intestinal inflammation. Drugs Today (Barc). 2001;37:85–96.CrossRefGoogle Scholar
  87. 87.
    Pardi DS, Sandborn WJ. Predicting relapse in patients with inflammatory bowel disease: what is the role of biomarkers? Gut. 2005;54:321–2.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Mao R, Xiao Y, Gao X, et al. FC in predicting relapse of inflammatory bowel diseases: a meta-analysis of prospective studies. Inflamm Bowel Dis. 2012;18:1894–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Walkiewicz D, Werlin S, Fish D, et al. FC is useful in predicting disease relapse in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2008;14:669–73.PubMedCrossRefGoogle Scholar
  90. 90.
    Mooiweer E, Severs M, Schipper ME, et al. Low FC predicts sustained clinical remission in inflammatory bowel disease patients: a plea for deep remission. J Crohns Colitis. 2015;9(1):50–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Louis E, Mary J, Vernier-Massouille G, et al. Groupe D’etudes Thérapeutiques Des Affections Inflammatoires Digestives. Maintenance of remission among patients with Crohn’s disease on antimetabolite therapy after infliximab therapy is stopped. Gastroenterology. 2012;142:63–70.PubMedCrossRefGoogle Scholar
  92. 92.
    Gisbert JP, Bermejo F, Perez-Calle JL, et al. FC and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflamm Bowel Dis. 2009;15:1190–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Molander P, Färkkilä M, Ristimäki A, et al. Does FC predict short-term relapse after stopping TNFα-blocking agents in inflammatory bowel disease patients in deep remission? J Crohns Colitis. 2015;9(1):33–40.PubMedGoogle Scholar
  94. 94.
    Ferreiro-Iglesias R, Barreiro-de Acosta M, Otero Santiago M, et al. FC as predictor of relapse in patients with inflammatory bowel disease under maintenance infliximab therapy. J Clin Gastroenterol. 2016;50(2):147–51.PubMedCrossRefGoogle Scholar
  95. 95.
    Costa F, Mumolo MG, Ceccarelli L, et al. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. Gut. 2005;54(3):364–8.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    D’Inca R, Dal Pont E, Di Leo V, et al. Can calprotectin predict relapse risk in inflammatory bowel disease? Am J Gastroenterol. 2008;103:2007–14.PubMedCrossRefGoogle Scholar
  97. 97.
    Garcia-Sanchez V, Iglesias-Flores E, Gonzalez R, et al. Does FC predict relapse in patients with Crohn’s disease and ulcerative colitis? J Crohns Colitis. 2010;4:144–52.PubMedCrossRefGoogle Scholar
  98. 98.
    De Vos M, Louis EJ, Jahnsen J, et al. Consecutive FC measurements to predict relapse in patients with ulcerative colitis receiving infliximab maintenance therapy. Inflamm Bowel Dis. 2013;19:2111–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Roseth AG, Aadland E, Grzyb K. Normalization of faecal calprotectin: a predictor of mucosal healing in patients with inflammatory bowel disease. Scand J Gastroenterol. 2004;39:1017–20.PubMedCrossRefGoogle Scholar
  100. 100.
    Molander P, Af Bjorkesten C, Mustonen H, et al. FC concentration predicts outcome in inflammatory bowel disease after induction therapy with TNFα blocking agents. Inflamm Bowel Dis. 2012;18:2011–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Wagner M, Peterson CG, Ridefelt P, et al. Fecal markers of inflammation used as surrogate markers for treatment outcome in relapsing inflammatory bowel disease. World J Gastroenterol. 2008;14(36):5584–9.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sipponen T, Savilahti E, Karkkainen P, et al. FC, lactoferrin, and endoscopic disease activity in monitoring anti-TNF-alpha therapy for Crohn’s disease. Inflamm Bowel Dis. 2008;14(10):1392–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Ho GT, Lee HM, Brydon G, et al. FC predicts the clinical course of acute severe ulcerative colitis. Am J Gastroenterol. 2009;104(3):673–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Kolho KL, Raivio T, Lindahl H, et al. FC remains high during glucocorticoid therapy in children with inflammatory bowel disease. Scand J Gastroenterol. 2006;41:720–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Kolho K, Sipponen T. The long-term outcome of anti-tumor necrosis factor-α therapy related to FC values during induction therapy in pediatric inflammatory bowel disease. Scand J Gastroenterol. 2014;49:434–41.PubMedCrossRefGoogle Scholar
  106. 106.
    Pineton de Chambrun G, Peyrin-Biroulet L, Lemann M, et al. Clinical implications of mucosal healing for the management of IBD. Nat Rev Gastroenterol Hepatol. 2010;7:15–29.PubMedCrossRefGoogle Scholar
  107. 107.
    Mazzuolia S, Guglielmi FW, Antonellib E, et al. Definition and evaluation of mucosal healing in clinical practice. Dig Liver Dis. 2013;45:969–77.CrossRefGoogle Scholar
  108. 108.
    Peyrin-Biroulet L, Ferrante M, Magro F, et al.; Scientific Committee of the European Crohn’s and Colitis Organization. Results from the 2nd Scientific Workshop of the ECCO. I: Impact of mucosal healing on the course of inflammatory bowel disease. J Crohns Colitis. 2011;5:477–483.Google Scholar
  109. 109.
    D’Haens G, Ferrante M, Vermeire S, et al. FC is a surrogate marker for endoscopic lesions in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:2218–24.PubMedCrossRefGoogle Scholar
  110. 110.
    Williams JG, Wong WD, Rothenberger DA, et al. Recurrence of Crohn’s disease after resection. Br J Surg. 1991;78:10–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Boschetti G, Laidet M, Moussata D, et al. Levels of FC are associated with the severity of postoperative endoscopic recurrence in asymptomatic patients with Crohn’s disease. Am J Gastroenterol. 2015;110:865–72.PubMedCrossRefGoogle Scholar
  112. 112.
    Orlando A, Modesto I, Castiglione F, et al. The role of calprotectin in predicting endoscopic post-surgical recurrence in asymptomatic Crohn’s disease: a comparison with ultrasound. Eur Rev Med Pharmacol Sci. 2006;10:17–22.PubMedGoogle Scholar
  113. 113.
    Scarpa M, D’Inca R, Basso D, et al. Fecal lactoferrin and calprotectin after ileocolonic resection for Crohn’s disease. Dis Colon Rectum. 2007;50:861–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Papay P, Ignjatovic A, Karmiris K, et al. Optimising monitoring in the management of Crohn’s disease: a physician’s perspective. J Crohns Colitis. 2013;7:653–69.PubMedCrossRefGoogle Scholar
  115. 115.
    Shen B, Fazio VW, Remzi FH, et al. Clinical approach to diseases of ileal pouch-anal anastomosis. Am J Gastroenterol. 2005;100:2796–807.PubMedCrossRefGoogle Scholar
  116. 116.
    Sandborn WJ. Pouchitis following ileal pouch-anal anastomosis: definition, pathogenesis, and treatment. Gastroenterology. 1994;107:1856–60.PubMedGoogle Scholar
  117. 117.
    Lohmuller JL, Pemberton JH, Dozois RR, et al. Pouchitis and extraintestinal manifestations of inflammatory bowel disease after ileal pouch-anal anastomosis. Ann Surg. 1990;211:622–7.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Stavlo PL, Libsch KD, Rodeberg DA, et al. Pediatric ileal pouch-anal anastomosis: functional outcomes and quality of life. J Pediatr Surg. 2003;38:935–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Shepherd NA, Jass JR, Duval I, et al. Restorative proctocolectomy with ileal reservoir: pathological and histochemical study of mucosal biopsy specimens. J Clin Pathol. 1987;40:601–7.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Thomas P, Rihani H, Roseth A, et al. Assessment of ileal pouch inflammation by single-stool calprotectin assay. Dis Colon Rectum. 2000;43:214–20.PubMedCrossRefGoogle Scholar
  121. 121.
    Johnson MW, Maestranzi S, Duffy AM, et al. FC: a noninvasive diagnostic tool and marker of severity in pouchitis. Eur J Gastroenterol Hepatol. 2008;20:174–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Yamamoto T, Shimoyama T, Bamba T, et al. Consecutive monitoring of FC and lactoferrin for the early diagnosis and prediction of pouchitis after restorative proctocolectomy for ulcerative colitis. Am J Gastroenterol. 2015;110:881–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Pakarinen MP, Koivusalo A, Natunen J, et al. FC mirrors inflammation of the distal ileum and bowel function after restorative proctocolectomy for pediatric onset ulcerative colitis. Inflamm Bowel Dis. 2010;16(3):482–6.PubMedCrossRefGoogle Scholar
  124. 124.
    Lehmann F, Trapani F, Fueglistaler I, et al. Clinical and histopathological correlations of FC release in colorectal carcinoma. World J Gastroenterol. 2014;20:4994–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Moum B, Jahnsen J, Bernklev T. FC variability in Crohn’s disease. Inflamm Bowel Dis. 2010;16:1091–2.PubMedCrossRefGoogle Scholar
  126. 126.
    Abraham BP, Kane S. Fecal markers: calprotectin and lactoferrin. Gastroenterol Clin N Am. 2012;41(2):483–95.CrossRefGoogle Scholar
  127. 127.
    Menees SB, Powell C, Kurlander J, et al. A meta-analysis of the utility of C-reactive protein, erythrocyte sedimentation rate, fecal calprotectin, and fecal lactoferrin to exclude inflammatory bowel disease in adults with IBS. Am J Gastroenterol. 2015;110(3):444–54.PubMedCrossRefGoogle Scholar
  128. 128.
    Kaiser T, Langhorst J, Wittkowski H, et al. Faecal S100A12 as a non-invasive marker distinguishing inflammatory bowel disease from irritable bowel syndrome. Gut. 2007;56:1706–13.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sidler M, Leach S, Day A. Fecal S100A12 and fecal calprotectin as noninvasive markers for inflammatory bowel disease in children. Inflamm Bowel Dis. 2008;14:359–66.PubMedCrossRefGoogle Scholar
  130. 130.
    Nakarai A, Kato J, Sakiko Hiraoka S, et al. Evaluation of mucosal healing of ulcerative colitis by a quantitative fecal immunochemical test. Am J Gastroenterol. 2013;108:83–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Mooiweer E, Fidder HH, Siersema PD, et al. Fecal hemoglobin and calprotectin are equally effective in identifying patients with inflammatory bowel disease with active endoscopic inflammation. Inflamm Bowel Dis. 2014;20:307–14.PubMedCrossRefGoogle Scholar
  132. 132.
    Takashima S, Kato J, Hiraoka S, et al. Evaluation of mucosal healing in ulcerative colitis by fecal calprotectin vs. fecal immunochemical test. Am J Gastroenterol. 2015;110:873–80.PubMedCrossRefGoogle Scholar
  133. 133.
    Kennedy NA, Clark A, Walkden A, et al. Clinical utility and diagnostic accuracy of faecal calprotectin for IBD at first presentation to gastroenterology services in adults aged 16–50 years. J Crohns Colitis. 2015;9(1):41–9.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Froehlich F, Gonvers JJ. Diagnostic yield of colonoscopy by indication. In: Wayne JD, Rex DK, Williams CB, editors. Colonoscopy: principles and practice. Massachusetts: Wiley-Blackwell; 2003. p. 111.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Gastroenterology 2016

Authors and Affiliations

  • Shapur Ikhtaire
    • 1
    • 2
  • Mohammad Sharif Shajib
    • 1
    • 2
  • Walter Reinisch
    • 2
    • 3
  • Waliul Islam Khan
    • 1
    • 2
  1. 1.Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonCanada
  2. 2.Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada
  3. 3.Division of Gastroenterology, Department of MedicineMcMaster UniversityHamiltonCanada

Personalised recommendations