Journal of Gastroenterology

, Volume 51, Issue 5, pp 447–457 | Cite as

Mouse model of proximal colon-specific tumorigenesis driven by microsatellite instability-induced Cre-mediated inactivation of Apc and activation of Kras

  • Yasuo Kawaguchi
  • Takao HinoiEmail author
  • Yasufumi Saito
  • Tomohiro Adachi
  • Masashi Miguchi
  • Hiroaki Niitsu
  • Tatsunari Sasada
  • Manabu Shimomura
  • Hiroyuki Egi
  • Shiro Oka
  • Shinji Tanaka
  • Kazuaki Chayama
  • Kazuhiro Sentani
  • Naohide Oue
  • Wataru Yasui
  • Hideki Ohdan
Original Article—Alimentary Tract



KRAS gene mutations are found in 40–50 % of colorectal cancer cases, but their functional contribution is not fully understood. To address this issue, we generated genetically engineered mice with colon tumors expressing an oncogenic Kras G12D allele in the context of the Adenomatous polyposis coli (Apc) deficiency to compare them to tumors harboring Apc deficiency alone.


CDX2P9.5-G22Cre (referred to as G22Cre) mice showing inducible Cre recombinase transgene expression in the proximal colon controlled under the CDX2 gene promoter were intercrossed with Apc flox/flox mice and LSL-Kras G12D mice carrying loxP-flanked Apc and Lox–Stop–Lox oncogenic Kras G12D alleles, respectively, to generate G22Cre;Apc flox/flox ;Kras G12D and G22Cre;Apc flox/flox ;KrasWT mice. Gene expression profiles of the tumors were analyzed using high-density oligonucleotide arrays.


Morphologically, minimal difference in proximal colon tumor was observed between the two mouse models. Consistent with previous findings in vitro, Glut1 transcript and protein expression was up-regulated in the tumors of G22Cre;Apc flox/flox ;Kras G12D mice. Immunohistochemical staining analysis revealed that GLUT1 protein expression correlated with KRAS mutations in human colorectal cancer. Microarray analysis identified 11 candidate genes upregulated more than fivefold and quantitative PCR analysis confirmed that Aqp8, Ttr, Qpct, and Slc26a3 genes were upregulated 3.7- to 30.2-fold in tumors with mutant Kras.


These results demonstrated the validity of the G22Cre;Apc flox/flox ;Kras G12D mice as a new mouse model with oncogenic Kras activation. We believe that this model can facilitate efforts to define novel factors that contribute to the pathogenesis of human colorectal cancer with KRAS mutations.


Kras Glut1 Colorectal cancer 



The author thanks Yuko Ishida and Midori Kiyokawa for their expert technical assistance. The author wishes to thank the Analysis Center of Life Science, Hiroshima University, for the use of their facilities. This work was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) Grant Number 22390257 (2010–2012) and 25293284 (2013–2016), The Japanese Society of Gastroenterology Grant-in-Aid 2010, and the Nakayama Cancer Research Institute Grant-in-Aid 2009 for Gastrointestinal disease.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

535_2015_1121_MOESM1_ESM.docx (72 kb)
Supplementary material 1 (DOCX 72 kb)
535_2015_1121_MOESM2_ESM.jpg (525 kb)
Supplementary material 2 (JPEG 525 kb)


  1. 1.
    Lievre A, Bachet JB, Boige V, et al. Kras mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26:374–9.CrossRefPubMedGoogle Scholar
  2. 2.
    De Roock W, Piessevaux H, De Schutter J, et al. Kras wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol. 2008;19:508–15.CrossRefPubMedGoogle Scholar
  3. 3.
    Heinemann V, von Weikersthal LF, Decker T, et al. Folfiri plus cetuximab versus folfiri plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (fire-3): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1065–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Schwartzberg LS, Rivera F, Karthaus M, et al. Peak: a randomized, multicenter phase ii study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mfolfox6) or bevacizumab plus mfolfox6 in patients with previously untreated, unresectable, wild-type kras exon 2 metastatic colorectal cancer. J Clin Oncol. 2014;32:2240–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Barbacid M. Ras genes. Annu Rev Biochem. 1987;56:779–827.CrossRefPubMedGoogle Scholar
  6. 6.
    Vaughn CP, Zobell SD, Furtado LV, et al. Frequency of kras, braf, and nras mutations in colorectal cancer. Genes Chromosom Cancer. 2011;50:307–12.CrossRefPubMedGoogle Scholar
  7. 7.
    Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. Ras oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11:761–74.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Haigis KM, Kendall KR, Wang Y, et al. Differential effects of oncogenic k-ras and n-ras on proliferation, differentiation and tumor progression in the colon. Nat Genet. 2008;40:600–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Peeters M, Oliner KS, Parker A, et al. Massively parallel tumor multigene sequencing to evaluate response to panitumumab in a randomized phase iii study of metastatic colorectal cancer. Clin Cancer Res. 2013;19:1902–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Schirripa M, Cremolini C, Loupakis F, et al. Role of nras mutations as prognostic and predictive markers in metastatic colorectal cancer. Int J Cancer. 2015;136:83–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Sorich MJ, Wiese MD, Rowland A, et al. Extended ras mutations and anti-egfr monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol. 2015;26:13–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.CrossRefPubMedGoogle Scholar
  13. 13.
    Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138:2059–72.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 2013;339:1546–58.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sinicrope FA, Shi Q, Smyrk TC, et al. Molecular markers identify subtypes of stage III colon cancer associated with patient outcomes. Gastroenterology. 2015;148:88–99.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(2073–87):e3.PubMedGoogle Scholar
  17. 17.
    Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Su LK, Kinzler KW, Vogelstein B, et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the apc gene. Science. 1992;256:668–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Taketo MM. Mouse models of gastrointestinal tumors. Cancer Sci. 2006;97:355–61.CrossRefPubMedGoogle Scholar
  20. 20.
    Young M, Ordonez L, Clarke AR. What are the best routes to effectively model human colorectal cancer? Mol Oncol. 2013;7:178–89.CrossRefPubMedGoogle Scholar
  21. 21.
    Zeineldin M, Neufeld KL. Understanding phenotypic variation in rodent models with germline apc mutations. Cancer Res. 2013;73:2389–99.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hinoi T, Gesina G, Akyol A, et al. Cdx2-regulated expression of iron transport protein hephaestin in intestinal and colonic epithelium. Gastroenterology. 2005;128:946–61.CrossRefPubMedGoogle Scholar
  23. 23.
    Hinoi T, Loda M, Fearon ER. Silencing of cdx2 expression in colon cancer via a dominant repression pathway. J Biol Chem. 2003;278:44608–16.CrossRefPubMedGoogle Scholar
  24. 24.
    Hinoi T, Lucas PC, Kuick R, et al. Cdx2 regulates liver intestine-cadherin expression in normal and malignant colon epithelium and intestinal metaplasia. Gastroenterology. 2002;123:1565–77.CrossRefPubMedGoogle Scholar
  25. 25.
    Takakura Y, Hinoi T, Oue N, et al. Cdx2 regulates multidrug resistance 1 gene expression in malignant intestinal epithelium. Cancer Res. 2010;70:6767–78.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hinoi T, Akyol A, Theisen BK, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic apc inactivation. Cancer Res. 2007;67:9721–30.CrossRefPubMedGoogle Scholar
  27. 27.
    Akyol A, Hinoi T, Feng Y, et al. Generating somatic mosaicism with a cre recombinase-microsatellite sequence transgene. Nat Methods. 2008;5:231–3.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sasada T, Hinoi T, Saito Y, et al. Chlorinated water modulates the development of colorectal tumors with chromosomal instability and gut microbiota in apc-deficient mice. PLoS One. 2015;10:e0132435.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tuveson DA, Shaw AT, Willis NA, et al. Endogenous oncogenic k-ras(g12d) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell. 2004;5:375–87.CrossRefPubMedGoogle Scholar
  30. 30.
    Yun J, Rago C, Cheong I, et al. Glucose deprivation contributes to the development of kras pathway mutations in tumor cells. Science. 2009;325:1555–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shibata H, Toyama K, Shioya H, et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science. 1997;278:120–3.CrossRefPubMedGoogle Scholar
  32. 32.
    Jackson EL, Willis N, Mercer K, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic k-ras. Genes Dev. 2001;15:3243–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Prante O, Maschauer S, Fremont V, et al. Regulation of uptake of 18f-fdg by a follicular human thyroid cancer cell line with mutation-activated k-ras. J Nucl Med. 2009;50:1364–70.CrossRefPubMedGoogle Scholar
  34. 34.
    Iwamoto M, Kawada K, Nakamoto Y, et al. Regulation of 18f-fdg accumulation in colorectal cancer cells with mutated kras. J Nucl Med. 2014;55:2038–44.CrossRefPubMedGoogle Scholar
  35. 35.
    Sansom OJ, Meniel V, Wilkins JA, et al. Loss of apc allows phenotypic manifestation of the transforming properties of an endogenous k-ras oncogene in vivo. Proc Natl Acad Sci USA. 2006;103:14122–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hung KE, Maricevich MA, Richard LG, et al. Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc Natl Acad Sci USA. 2010;107:1565–70.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Byun AJ, Hung KE, Fleet JC, et al. Colon-specific tumorigenesis in mice driven by cre-mediated inactivation of apc and activation of mutant kras. Cancer Lett. 2014;347:191–5.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Luo F, Brooks DG, Ye H, et al. Conditional expression of mutated k-ras accelerates intestinal tumorigenesis in msh2-deficient mice. Oncogene. 2007;26:4415–27.CrossRefPubMedGoogle Scholar
  39. 39.
    Janssen KP, Alberici P, Fsihi H, et al. Apc and oncogenic kras are synergistic in enhancing wnt signaling in intestinal tumor formation and progression. Gastroenterology. 2006;131:1096–109.CrossRefPubMedGoogle Scholar
  40. 40.
    Luo F, Brooks DG, Ye H, et al. Mutated k-ras(asp12) promotes tumourigenesis in apc(min) mice more in the large than the small intestines, with synergistic effects between k-ras and wnt pathways. Int J Exp Pathol. 2009;90:558–74.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Biswas S, Trobridge P, Romero-Gallo J, et al. Mutational inactivation of tgfbr2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonal outgrowth of transforming growth factor beta resistant cells. Genes Chromosom Cancer. 2008;47:95–106.CrossRefPubMedGoogle Scholar
  42. 42.
    Ionov Y, Yamamoto H, Krajewski S, et al. Mutational inactivation of the proapoptotic gene bax confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci USA. 2000;97:10872–7.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hempen PM, Zhang L, Bansal RK, et al. Evidence of selection for clones having genetic inactivation of the activin a type ii receptor (acvr2) gene in gastrointestinal cancers. Cancer Res. 2003;63:994–9.PubMedGoogle Scholar
  44. 44.
    Woerner SM, Tosti E, Yuan YP, et al. Detection of coding microsatellite frameshift mutations in DNA mismatch repair-deficient mouse intestinal tumors. Mol Carcinog. 2014. doi: 10.1002/mc.22213.PubMedGoogle Scholar
  45. 45.
    Kucherlapati MH, Lee K, Nguyen AA, et al. An msh2 conditional knockout mouse for studying intestinal cancer and testing anticancer agents. Gastroenterology. 2010;138(993–1002):e1.PubMedGoogle Scholar

Copyright information

© Japanese Society of Gastroenterology 2015

Authors and Affiliations

  • Yasuo Kawaguchi
    • 1
  • Takao Hinoi
    • 1
    Email author
  • Yasufumi Saito
    • 1
  • Tomohiro Adachi
    • 1
  • Masashi Miguchi
    • 1
  • Hiroaki Niitsu
    • 1
  • Tatsunari Sasada
    • 1
  • Manabu Shimomura
    • 1
  • Hiroyuki Egi
    • 1
  • Shiro Oka
    • 2
  • Shinji Tanaka
    • 2
  • Kazuaki Chayama
    • 3
  • Kazuhiro Sentani
    • 4
  • Naohide Oue
    • 4
  • Wataru Yasui
    • 4
  • Hideki Ohdan
    • 1
  1. 1.Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Department of Endoscopy and Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
  3. 3.Department of Gastroenterology and Metabolism, Applied life sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
  4. 4.Department of Molecular Pathology, Applied life sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations