Advertisement

Journal of Gastroenterology

, Volume 49, Issue 10, pp 1421–1429 | Cite as

Combination of sorafenib and angiotensin-II receptor blocker attenuates preneoplastic lesion development in a non-diabetic rat model of steatohepatitis

  • Hitoshi YoshijiEmail author
  • Ryuichi Noguchi
  • Tadashi Namisaki
  • Kei Moriya
  • Mitsuteru Kitade
  • Yosuke Aihara
  • Akitoshi Douhara
  • Hideto Kawaratani
  • Norihisa Nishimura
  • Hiroshi Fukui
Original Article—Liver, Pancreas, and Biliary Tract

Abstract

Background

Given the well-documented adverse side effects of sorafenib, many sorafenib-treated patients may need the reduced initial dose of the compound, and an alternative sorafenib-based therapy, which exerts similar clinical benefit, is anticipated. An angiostatic therapy with sorafenib is considered one of the promising approaches for chemoprevention of hepatocellular carcinoma. The aim of the current study was to elucidate the combination effect of low dose of sorafenib and angiotensin-II receptor blocker (ARB) on hepatocarcinogenesis, especially in conjunction with angiogenesis.

Methods

The chemopreventive effect on the development of liver preneoplastic lesions, angiogenesis, and several indices was elucidated in rats. We also performed several sets of in vitro experiments to examine the mechanisms involved.

Results

Using a non-diabetic rat model of steatohepatitis with choline deficient l-amino acid-defined diet, sorafenib demonstrated marked inhibition of preneoplastic lesions in a dose dependent manner. Combined treatment with ARB (losartan) at a clinically comparable dose and half dose of sorafenib resulted in the inhibitory effect equivalent to that of common dose of sorafenib along with suppression of hepatic neovascularization and potent angiogenic factor, vascular endothelial growth factor. Furthermore, similar combined inhibitory outcomes were observed in several sets of in vitro studies.

Conclusion

Since the combinatorial treatment using low doses of sorafenib and ARB could sufficiently induce inhibitory effect on the development of preneoplastic lesions at the magnitude similar to the conventional dose of sorafenib, this regimen may provide new strategy for patients intolerant of the usual dose of sorafenib in the future.

Keywords

Angiogenesis Angiotensin-II Non-alcoholic steatohepatitis Hepatocarcinogenesis Sorafenib 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Yasui K, Hashimoto E, Tokushige K, Koike K, Shima T, Kanbara Y, et al. Clinical and pathological progression of non-alcoholic steatohepatitis to hepatocellular carcinoma. Hepatol Res. 2012;42:767–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000;21:505–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett. 2012;320:130–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Guo RP, Zhong C, Shi M, Zhang CQ, Wei W, Zhang YQ, et al. Clinical value of apoptosis and angiogenesis factors in estimating the prognosis of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2006;132:547–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Iavarone M, Lampertico P, Iannuzzi F, Manenti E, Donato MF, Arosio E, et al. Increased expression of vascular endothelial growth factor in small hepatocellular carcinoma. J Viral Hepat. 2007;14:133–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Dufour JF. Anti-angiogenic therapy for HCC. Minerva Gastroenterol Dietol. 2012;58:81–6.PubMedGoogle Scholar
  8. 8.
    Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, et al. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst. 2000;92:143–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 1999;284:808–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Brandvold KA, Neiman P, Ruddell A. Angiogenesis is an early event in the generation of myc-induced lymphomas. Oncogene. 2000;19:2780–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Halting the interaction between vascular endothelial growth factor and its receptors attenuates liver carcinogenesis in mice. Hepatology. 2004;39:1517–24.PubMedCrossRefGoogle Scholar
  13. 13.
    Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–49.PubMedCrossRefGoogle Scholar
  14. 14.
    Romanque P, Piguet AC, Dufour JF. Targeting vessels to treat hepatocellular carcinoma. Clin Sci (Lond). 2008;114:467–77.CrossRefGoogle Scholar
  15. 15.
    Wu XZ. New strategy of antiangiogenic therapy for hepatocellular carcinoma. Neoplasma. 2008;55:472–81.PubMedGoogle Scholar
  16. 16.
    Xie B, Wang DH, Spechler SJ. Sorafenib for treatment of hepatocellular carcinoma: a systematic review. Dig Dis Sci. 2012;57:1122–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.PubMedCrossRefGoogle Scholar
  18. 18.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Eskens FA, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer. 2006;42:3127–39.PubMedCrossRefGoogle Scholar
  20. 20.
    Verheul HM, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer. 2007;7:475–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshiji H, Noguchi R, Ikenaka Y, Kitade M, Kaji K, Tsujimoto T, et al. Renin-angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases. Curr Med Chem. 2007;14:2749–54.PubMedCrossRefGoogle Scholar
  22. 22.
    Nakai Y, Isayama H, Ijichi H, Sasaki T, Sasahira N, Hirano K, et al. Inhibition of renin-angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. Br J Cancer. 2010;103:1644–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Yoshiji H, Noguchi R, Ikenaka Y, Namisaki T, Kitade M, Kaji K, et al. Losartan, an angiotensin-II type 1 receptor blocker, attenuates the liver fibrosis development of non-alcoholic steatohepatitis in the rat. BMC Res Notes. 2009;2:70.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, et al. Combination of vitamin K(2) and the angiotensin-converting enzyme inhibitor, perindopril, attenuates the liver enzyme-altered preneoplastic lesions in rats via angiogenesis suppression. J Hepatol. 2005;42:687–93.PubMedCrossRefGoogle Scholar
  25. 25.
    Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut. 2003;52:1347–54.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in murine hepatocellular carcinoma. Hepatology. 2002;35:834–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, et al. Angiopoietin 2 displays a vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice. Gut. 2005;54:1768–75.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Saito M, Hamasaki M, Shibuya M. Induction of tube formation by angiopoietin-1 in endothelial cell/fibroblast co-culture is dependent on endogenous VEGF. Cancer Sci. 2003;94:782–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Saif MW. Anti-angiogenesis therapy in pancreatic carcinoma. Jop. 2006;7:163–73.PubMedGoogle Scholar
  30. 30.
    Feng YX, Wang T, Deng YZ, Yang P, Li JJ, Guan DX, et al. Sorafenib suppresses postsurgical recurrence and metastasis of hepatocellular carcinoma in an orthotopic mouse model. Hepatology. 2011;53:483–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Reiberger T, Angermayr B, Schwabl P, Rohr-Udilova N, Mitterhauser M, Gangl A, et al. Sorafenib attenuates the portal hypertensive syndrome in partial portal vein ligated rats. J Hepatol. 2009;51:865–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang Y, Gao J, Zhang D, Zhang J, Ma J, Jiang H. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol. 2010;53:132–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Frachon S, Gouysse G, Dumortier J, Couvelard A, Nejjari M, Mion F, et al. Endothelial cell marker expression in dysplastic lesions of the liver: an immunohistochemical study. J Hepatol. 2001;34:850–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Iavarone M, Cabibbo G, Piscaglia F, Zavaglia C, Grieco A, Villa E, et al. Field-practice study of sorafenib therapy for hepatocellular carcinoma: a prospective multicenter study in Italy. Hepatology. 2011;54:2055–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Azad NS, Aragon-Ching JB, Dahut WL, Gutierrez M, Figg WD, Jain L, et al. Hand-foot skin reaction increases with cumulative sorafenib dose and with combination anti-vascular endothelial growth factor therapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15:1411–6.CrossRefGoogle Scholar
  36. 36.
    Strumberg D, Awada A, Hirte H, Clark JW, Seeber S, Piccart P, et al. Pooled safety analysis of BAY 43-9006 (sorafenib) monotherapy in patients with advanced solid tumours: is rash associated with treatment outcome? Eur J Cancer. 2006;42:548–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Hora C, Romanque P, Dufour JF. Effect of sorafenib on murine liver regeneration. Hepatology. 2011;53:577–86.PubMedCrossRefGoogle Scholar
  38. 38.
    Yoshiji H, Noguchi R, Kuriyama S, Yoshii J, Ikenaka Y. Combination of interferon and angiotensin-converting enzyme inhibitor, perindopril, suppresses liver carcinogenesis and angiogenesis in mice. Oncol Rep. 2005;13:491–5.PubMedGoogle Scholar
  39. 39.
    Yoshiji H, Noguchi R, Toyohara M, Ikenaka Y, Kitade M, Kaji K, et al. Combination of vitamin K2 and angiotensin-converting enzyme inhibitor ameliorates cumulative recurrence of hepatocellular carcinoma. J Hepatol. 2009;51:315–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Kaji K, Yoshiji H, Kitade M, Ikenaka Y, Noguchi R, Yoshii J, et al. Impact of insulin resistance on the progression of chronic liver diseases. Int J Mol Med. 2008;22:801–8.PubMedGoogle Scholar
  41. 41.
    Kaji K, Yoshiji H, Ikenaka Y, Noguchi R, Aihara Y, Shirai Y, et al. Possible involvement of angiogenesis in chronic liver diseases: interaction among renin-angiotensin-aldosterone system, insulin resistance and oxidative stress. Curr Med Chem. 2012;19:1889–98.PubMedCrossRefGoogle Scholar
  42. 42.
    Paternostro C, David E, Novo E, Parola M. Hypoxia, angiogenesis and liver fibrogenesis in the progression of chronic liver diseases. World J Gastroenterol. 2010;16:281–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Valfre di Bonzo L, Novo E, Cannito S, Busletta C, Paternostro C, Povero D, et al. Angiogenesis and liver fibrogenesis. Histol Histopathol. 2009;24:1323–41.PubMedGoogle Scholar
  44. 44.
    Kitade M, Yoshiji H, Kojima H, Ikenaka Y, Noguchi R, Kaji K, et al. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology. 2006;44:983–91.PubMedCrossRefGoogle Scholar
  45. 45.
    Amarapurkar AD, Amarapurkar DN, Vibhav S, Patel ND. Angiogenesis in chronic liver disease. Ann Hepatol. 2007;6:170–3.PubMedGoogle Scholar
  46. 46.
    Ueno T, Nakamura T, Torimura T, Sata M. Angiogenic cell therapy for hepatic fibrosis. Med Mol Morphol. 2006;39:16–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang Y, Gao J, Zhang D, Zhang J, Ma J, Jiang H. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol. 2010;53:132–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Sakaida I, Hironaka K, Uchida K, Suzuki C, Kayano K, Okita K. Fibrosis accelerates the development of enzyme-altered lesions in the rat liver. Hepatology. 1998;28:1247–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology. 2012;56:769–75.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Noguchi R, Yoshiji H, Ikenaka Y, Kaji K, Aihara Y, Shirai Y, et al. Dual blockade of angiotensin-II and aldosterone suppresses the progression of a non-diabetic rat model of steatohepatitis. Hepatol Res 2012.Google Scholar
  51. 51.
    Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology. 2001;34:745–50.PubMedCrossRefGoogle Scholar
  52. 52.
    Tsujimoto T, Kawaratani H, Kitazawa T, Hirai T, Ohishi H, Kitade M, et al. Decreased phagocytic activity of Kupffer cells in a rat nonalcoholic steatohepatitis model. World J Gastroenterol. 2008;14:6036–43.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nakae D, Yoshiji H, Mizumoto Y, Horiguchi K, Shiraiwa K, Tamura K, et al. High incidence of hepatocellular carcinomas induced by a choline deficient l-amino acid defined diet in rats. Cancer Res. 1992;52:5042–5.PubMedGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Hitoshi Yoshiji
    • 1
    Email author
  • Ryuichi Noguchi
    • 1
  • Tadashi Namisaki
    • 1
  • Kei Moriya
    • 1
  • Mitsuteru Kitade
    • 1
  • Yosuke Aihara
    • 1
  • Akitoshi Douhara
    • 1
  • Hideto Kawaratani
    • 1
  • Norihisa Nishimura
    • 1
  • Hiroshi Fukui
    • 1
  1. 1.Third Department of Internal MedicineNara Medical UniversityKashiharaJapan

Personalised recommendations