Advertisement

Journal of Gastroenterology

, Volume 49, Issue 2, pp 270–282 | Cite as

Conditioned mesenchymal stem cells produce pleiotropic gut trophic factors

  • Shuhei Watanabe
  • Yoshiaki ArimuraEmail author
  • Kanna Nagaishi
  • Hiroyuki Isshiki
  • Kei Onodera
  • Masanao Nasuno
  • Kentaro Yamashita
  • Masashi Idogawa
  • Yasuyoshi Naishiro
  • Masaki Murata
  • Yasushi Adachi
  • Mineko Fujimiya
  • Kohzoh Imai
  • Yasuhisa Shinomura
Original Article—Alimentary Tract

Abstract

Background

Although mounting evidence implicates mesenchymal stem cells (MSCs) in intestinal tissue repair, controversy remains regarding the engraftment, proliferation, and differentiation for repopulating MSCs in recipient tissues. Therefore, we investigated the paracrine and/or endocrine role of MSCs in experimental colitis.

Methods

We analyzed the therapeutic effects of MSC-conditioned medium (MSC-CM) on dextran sulfate sodium (DSS)- or 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. We investigated the effects of MSC-CM on the epithelial cell viability, mobility, cell cycle, and cytokine production in ex vivo lamina propria/mesenteric lymphocytes, a macrophage cell line, and the mixed lymphocyte reaction. An optimal regimen against colitis was explored. The contents of MSC-CM were analyzed using a WNT signaling pathway polymerase chain reaction array, an inflammatory cytokines antibody array, and liquid chromatography-tandem mass spectrometry analysis.

Results

Independent of the systemic administration route, MSC-CM concentrates were effective for the inductive phase of TNBS-induced colitis and for the recovery phase of DSS-induced colitis. Hypoxia appeared to be one of the optimal preconditioning factors assessed by cell motility and viability through activating the PI3K-Akt pathway in rat small intestine epithelial cells, IEC-6. Thus, Hypoxia had profound effects on the contents of MSC-CM, which comprised pleiotropic gut trophic factors involved in each wound healing process, including the anti-inflammatory, proliferative, and tissue remodeling phases.

Conclusions

Identification and optimization of potential gut trophic factors in MSC-CM is urgently needed to form the basis for new drug discovery and for optimizing cell-based therapies for inflammatory bowel disease.

Keywords

Mesenchymal stem cell Conditioned medium Dextran sulfate sodium colitis 2,4,6-Trinitrobenzenesulfonic acid Inflammatory bowel disease 

Notes

Acknowledgments

We would like to thank Ms. K Fujii, Research Assistant, Sapporo Medical University, for technical assistance. This work was supported in part by Health and Labor Sciences Research Grants for research on intractable diseases from the Ministry of Health, Labor and Welfare of Japan (to K.I.).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

535_2013_901_MOESM1_ESM.doc (950 kb)
Supplementary material 1 (DOC 949 kb)
535_2013_901_MOESM2_ESM.tif (78 kb)
Supplementary material 2 (TIFF 77 kb)
535_2013_901_MOESM3_ESM.tif (1.6 mb)
Supplementary material 3 (TIFF 1646 kb)
535_2013_901_MOESM4_ESM.tif (598 kb)
Supplementary material 4 (TIFF 598 kb)
535_2013_901_MOESM5_ESM.tif (270 kb)
Supplementary material 5 (TIFF 269 kb)

References

  1. 1.
    Richardson SM, Hoyland JA, Mobasheri R, Csaki C, Shakibaei M, Mobasheri A. Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol. 2010;222:23–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Koҫ ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transpl. 2002;30:215–22.CrossRefGoogle Scholar
  4. 4.
    Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA. 2002;99:8932–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al. Developmental Committee of the European Group for Blood and Marrow Transplantation. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371:1579–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48:1416–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Garcia-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009;52:79–86.PubMedCrossRefGoogle Scholar
  8. 8.
    Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut. 2011;60:788–98.PubMedCrossRefGoogle Scholar
  9. 9.
    Guadalajara H, Herreros D, De-La-Quintana P, Trebol J, Garcia-Arranz M, Garcia-Olmo D. Long-term follow-up of patients undergoing adipose-derived adult stem cell administration to treat complex perianal fistulas. Int J Colorectal Dis. 2012;27:595–600.PubMedCrossRefGoogle Scholar
  10. 10.
    Herreros MD, Garcia-Arranz M, Guadalajara H, De-La-Quintana P, Garcia-Olmo D, FATT Collaborative Group. Autologous expanded adipose-derived stem cells for the treatment of complex cryptoglandular perianal fistulas: a phase III randomized clinical trial (FATT 1 Fistula Advanced Therapy Trial 1) and long-term evaluation. Dis Colon Rectum. 2012;55:762–72.PubMedCrossRefGoogle Scholar
  11. 11.
    de la Portilla F, Alba F, García-Olmo D, Herrerías JM, González FX, Galindo A. Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. Int J Colorectal Dis. 2013;28:313–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Lee WY, Park KJ, Cho YB, Yoon SN, Song KH, Kim DS, et al. Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn’s fistula. Stem Cells. 2013;. doi: 10.1002/stem.1357.Google Scholar
  13. 13.
    Duijvestein M, Vos AC, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut. 2010;59:1662–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Liang J, Zhang H, Wang D, Feng X, Wang H, Hua B, et al. Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut. 2012;61:468–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Forbes G, Sturm M, Leong R, Sparrow M, Segarajasingam D, Cummins A, et al. P590 Allogeneic mesenchymal stromal cells for biologic refractory luminal Crohn’s disease. J Crohn’s Colitis. 2013;7:S247.CrossRefGoogle Scholar
  16. 16.
    Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS ONE. 2012;7:e47559.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.PubMedGoogle Scholar
  18. 18.
    Watt J, Marcus R. Experimental ulcerative disease of the colon. Methods Achiev Exp Pathol. 1975;7:56–71.PubMedGoogle Scholar
  19. 19.
    Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein VE, Büchler MW. Characterization of acute murine Dextran Sodium Sulphate colitis: cytokine profile and dose dependency. Digestion. 2000;62:240–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Neurath MF, Fuss I, Kelsall BL, Stüber E, Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995;182:1281–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Williams KL, Fuller CR, Dieleman LA, DaCosta CM, Haldeman KM, Sartor RB, et al. Enhanced survival and mucosal repair after dextran sodium sulfate-induced colitis in transgenic mice that overexpress growth hormone. Gastroenterology. 2001;120:925–37.PubMedCrossRefGoogle Scholar
  22. 22.
    González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136:978–89.PubMedCrossRefGoogle Scholar
  23. 23.
    Yabana T, Arimura Y, Tanaka H, Goto A, Hosokawa M, Nagaishi K, et al. Enhancing epithelial engraftment of rat mesenchymal stem cells restores epithelial barrier integrity. J Pathol. 2009;218:350–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Tanaka H, Arimura Y, Yabana T, Goto A, Hosokawa M, Nagaishi K, et al. Myogenic lineage differentiated mesenchymal stem cells enhance recovery from dextran sulfate sodium-induced colitis in the rat. J Gastroenterol. 2011;46:143–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee R, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5:54–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Zangi L, Margalit R, Reich-Zeliger S, Kota DJ, Ylostalo J, Larson BL, et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells. 2009;27:2865–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Phinney D, Prockop D. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007;25:2896–902.PubMedCrossRefGoogle Scholar
  28. 28.
    Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, et al. Mesenchymal stem cell derived molecules reverse fulminant hepatic failure. PLoS ONE. 2007;2:e941.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y, Tilles AW, et al. Mesenchymal stem cell derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology. 2008;47:1634–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol. 2007;292:F1626–35.PubMedCrossRefGoogle Scholar
  31. 31.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Uccelli A, Laroni A, Freedman MS. Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol. 2011;10:649–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Hansson EM, Lindsay ME, Chien KR. Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell. 2009;5:364–77.PubMedCrossRefGoogle Scholar
  34. 34.
    Gebäck T, Schulz MMP, Koumoutsakos P, Detmar M. A novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques. 2009;46:265–74.PubMedGoogle Scholar
  35. 35.
    Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E, Iijima H, et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J Exp Med. 2002;195:1129–43.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Iijima H, Neurath MF, Nagaishi T, Glickman JN, Nieuwenhuis EE, Nakajima A, et al. Specific regulation of T helper cell 1-mediated murine colitis by CEACAM1. J Exp Med. 2004;199:471–82.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Ohnishi S, Yasuda T, Kitamura S, Nagaya N. Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells. 2007;25:1166–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Tabachnick BG, Fidell LS, editors. Using multivariate statistics. 4th ed. New York: HarperCollins; 2001.Google Scholar
  39. 39.
    Duijvestein M, Wildenberg ME, Welling MM, Hennink S, Molendijk I, van Zuylen VL, et al. Pretreatment with interferon-γ enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells. 2011;10:1549–58.CrossRefGoogle Scholar
  40. 40.
    Rosová I, Dao M, Capoccia B, Link D, Nolta JA. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells. 2008;8:2173–82.CrossRefGoogle Scholar
  41. 41.
    Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Brittan M, Hunt T, Jeffery R, Poulsom R, Forbes SJ, Hodivala-Dilke K, et al. Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut. 2002;50:752–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Hayashi Y, Tsuji S, Tsujii M, Nishida T, Ishii S, Nakamura T, et al. The transdifferentiation of bone-marrow-derived cells in colonic mucosal regeneration after dextran-sulfate-sodium-induced colitis in mice. Pharmacology. 2007;80:193–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Jiang S, Walker L, Afentoulis M, Anderson DA, Jauron-Mills L, Corless CL, et al. Transplanted human bone marrow contributes to vascular endothelium. Proc Natl Acad Sci. 2004;101:16891–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Wei Y, Nie Y, Lai J, Wan YJ, Li Y. Comparison of the population capacity of hematopoietic and mesenchymal stem cells in experimental colitis rat model. Transplantation. 2009;88:42–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Khalil PN, Weiler V, Nelson PJ, Khalil MN, Moosmann S, Mutschler WE, et al. Nonmyeloablative stem cell therapy enhances microcirculation and tissue regeneration in murine inflammatory bowel disease. Gastroenterology. 2007;132:944–54.PubMedCrossRefGoogle Scholar
  47. 47.
    Valadi H. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Haddad JJ. Science review: redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for hypoxia-inducible factor-1alpha. Crit Care. 2003;7:47–54.PubMedCrossRefGoogle Scholar
  49. 49.
    Kokura S, Yoshida N, Yoshikawa T. Anoxia/reoxygenation induced leukocyte–endothelial cell interactions. Free Radic Biol Med. 2002;33:427–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Saadi S, Wrenshall LE, Platt J. Regional manifestations and control of the immune system. FASEB J. 2003;16:849–56.CrossRefGoogle Scholar
  51. 51.
    Hatoum OA, Binion DG, Gutterman DD. Paradox of simultaneous intestinal ischaemia and hyperaemia in inflammatory bowel disease. Eur J Clin Invest. 2005;35:599–609.PubMedCrossRefGoogle Scholar
  52. 52.
    Giatromanolaki A, Sivridis E, Maltezos E, Papazoglou D, Simopoulos C, Gatter KC, et al. Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. J Clin Pathol. 2003;56:209–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Danese S, Dejana E, Fiocchi C. Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol. 2007;178:6017–22.PubMedGoogle Scholar
  54. 54.
    Karhausen JO, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Invest. 2004;114:1098–106.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Hung SC, Pochamplly RR, Chen SC, Hsu SC, Prockop DJ. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells. 2007;25:2363–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Ando Y, Inaba M, Sakaguchi Y, Tsuda M, Quan GK, Omae M, et al. Subcutaneous adipose tissue derived stem cells facilitate colonic mucosal recovery from 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. Inflamm Bowel Dis. 2008;14:826–38.PubMedCrossRefGoogle Scholar
  57. 57.
    Low QE, Drugea IA, Duffner LA, Quinn DG, Cook DN, Rollins BJ, et al. Wound healing in MIP-1alpha(−/−) and MCP-1(−/−) mice. Am J Pathol. 2001;159:457–63.PubMedCrossRefGoogle Scholar
  58. 58.
    Lopez-Dee ZP, Chittur SV, Patel B, Stanton R, Wakeley M, Lippert B, et al. Thrombospondin-1 type 1 repeats in a model of inflammatory bowel disease: transcript profile and therapeutic effects. PLoS ONE. 2012;7:e34590.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Ouko L, Ziegler TR, Gu LH, Eisenberg LM, Yang VW. Wnt11 signaling promotes proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J Biol Chem. 2004;279:26707–15.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Shuhei Watanabe
    • 1
  • Yoshiaki Arimura
    • 1
    Email author
  • Kanna Nagaishi
    • 2
  • Hiroyuki Isshiki
    • 1
  • Kei Onodera
    • 1
  • Masanao Nasuno
    • 1
  • Kentaro Yamashita
    • 1
  • Masashi Idogawa
    • 3
  • Yasuyoshi Naishiro
    • 4
  • Masaki Murata
    • 5
  • Yasushi Adachi
    • 1
  • Mineko Fujimiya
    • 2
  • Kohzoh Imai
    • 6
  • Yasuhisa Shinomura
    • 1
  1. 1.Department of Gastroenterology, Rheumatology, and Clinical ImmunologySapporo Medical UniversitySapporoJapan
  2. 2.Department of AnatomySapporo Medical UniversitySapporoJapan
  3. 3.Department of Medical Genome Sciences, Research Institute for Frontier MedicineSapporo Medical UniversitySapporoJapan
  4. 4.Department of Educational DevelopmentSapporo Medical UniversitySapporoJapan
  5. 5.Department of PathologySapporo Medical UniversitySapporoJapan
  6. 6.Center for Antibody and Vaccine Therapy, Institute of Medical ScienceUniversity of TokyoTokyoJapan

Personalised recommendations