Journal of Gastroenterology

, Volume 49, Issue 4, pp 748–754

IL28B minor allele is associated with a younger age of onset of hepatocellular carcinoma in patients with chronic hepatitis C virus infection

  • Masaya Sato
  • Naoya Kato
  • Ryosuke Tateishi
  • Ryosuke Muroyama
  • Norie Kowatari
  • Wenwen Li
  • Kaku Goto
  • Motoyuki Otsuka
  • Shuichiro Shiina
  • Haruhiko Yoshida
  • Masao Omata
  • Kazuhiko Koike
Original Article—Liver, Pancreas, and Biliary Tract



IL28B polymorphisms were shown to be associated with a response to peg-interferon-based treatment in chronic hepatitis C (CHC) and spontaneous clearance. However, little is known about how this polymorphism affects the course of CHC, including the development of hepatocellular carcinoma (HCC). We evaluated the influence of IL28B polymorphisms on hepatocarcinogenesis in CHC patients.


We genotyped the rs8099917 single-nucleotide polymorphism in 351 hepatitis C-associated HCC patients without history of IFN-based treatment, and correlated the age at onset of HCC in patients with each genotype.


Frequencies of TT, TG, and GG genotypes were 74.3 % (261/351), 24.8 % (87/351), and 0.9 % (3/351), respectively. The mean ages at onset of HCC for TT, TG, and GG genotypes were 69.9, 67.5 and 66.8, respectively. In multivariate analysis, IL28B minor allele (TG and GG genotypes) was an independent risk factor for younger age at onset of HCC (P = 0.02) in males (P < 0.001) with higher body mass index (BMI; P = 0.009). The IL28B minor allele was also associated with a lower probability of having aspartate aminotransferase-to-platelet ratio index (APRI) >1.5 (minor vs. major, 46.7 vs. 58.6 %; P = 0.01), lower AST (69.1 vs. 77.7 IU/L, P = 0.02), lower ALT (67.8 vs. 80.9 IU/L, P = 0.002), higher platelet count (12.8 vs. 11.2 × 104/μL, P = 0.002), and higher prothrombin time (79.3 vs. 75.4 %, P = 0.002).


The IL28B minor allele was associated with lower inflammatory activity and less progressed fibrosis of the liver; however, it constituted a risk factor for younger-age onset of HCC in CHC patients.


rs8099917 Hepatocarcinogenesis Interferon-λ Risk allele Fibrosis 





Aminotransferase platelet ratio index


Chronic hepatitis C


Genome-wide association study


Hepatocellular carcinoma


Hepatitis C virus


Interleukin 28B


Polymerase chain reaction




Retinoic acid-inducible gene-I


Single-nucleotide polymorphism


Sustained viral response


Toll-like receptor 3


  1. 1.
    Barrera JM, Bruguera M, Ercilla MG, Gil C, Celis R, Gil MP, et al. Persistent hepatitis C viremia after acute self-limiting posttransfusion hepatitis C. Hepatology. 1995;21:639–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Hadziyannis SJ, Sette H Jr, Morgan TR, Balan V, Diago M, Marcellin P, et al. Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med. 2004;140:346–55.PubMedCrossRefGoogle Scholar
  3. 3.
    Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358:958–65.PubMedCrossRefGoogle Scholar
  4. 4.
    McHutchison JG, Everson GT, Gordon SC, Jacobson IM, Sulkowski M, Kauffman R, et al. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N Engl J Med. 2009;360:1827–38.PubMedCrossRefGoogle Scholar
  5. 5.
    Poordad F, McCone J Jr, Bacon BR, Bruno S, Manns MP, Sulkowski MS, et al. Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med. 2011;364:1195–206.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461:399–401.PubMedCrossRefGoogle Scholar
  7. 7.
    Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009;41:1105–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet. 2009;41:1100–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O’Huigin C, et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature. 2009;461:798–801.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5:730–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Moriyama M, Kato N, Otsuka M, Shao RX, Taniguchi H, Kawabe T, et al. Interferon-beta is activated by hepatitis C virus NS5B and inhibited by NS4A, NS4B, and NS5A. Hepatol Int. 2007;1:302–10.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Li CZ, Kato N, Chang JH, Muroyama R, Shao RX, Dharel N, et al. Polymorphism of OAS-1 determines liver fibrosis progression in hepatitis C by reduced ability to inhibit viral replication. Liver Int. 2009;29:1413–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Li W, Lewis-Antes A, Huang J, Balan M, Kotenko SV. Regulation of apoptosis by type III interferons. Cell Prolif. 2008;41:960–79.PubMedCrossRefGoogle Scholar
  14. 14.
    Numasaki M, Tagawa M, Iwata F, Suzuki T, Nakamura A, Okada M, et al. IL-28 elicits antitumor responses against murine fibrosarcoma. J Immunol. 2007;178:5086–98.PubMedGoogle Scholar
  15. 15.
    Li M, Liu X, Zhou Y, Su SB. Interferon-lambdas: the modulators of antivirus, antitumor, and immune responses. J Leukoc Biol. 2009;86:23–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Maher SG, Sheikh F, Scarzello AJ, Romero-Weaver AL, Baker DP, Donnelly RP, et al. IFNalpha and IFNlambda differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol Ther. 2008;7:1109–15.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Tateishi R, Shiina S, Teratani T, Obi S, Sato S, Koike Y, et al. Percutaneous radiofrequency ablation for hepatocellular carcinoma. An analysis of 1000 cases. Cancer. 2005;2005(103):1201–9.CrossRefGoogle Scholar
  18. 18.
    Masuzaki R, Tateishi R, Yoshida H, Goto E, Sato T, Ohki T, et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology. 2009;49:1954–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38:518–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Kiyosawa K, Umemura T, Ichijo T, Matsumoto A, Yoshizawa K, Gad A, et al. Hepatocellular carcinoma: recent trends in Japan. Gastroenterology. 2004;127:S17–26.PubMedCrossRefGoogle Scholar
  21. 21.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, Hosono N, et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet. 2011;43:455–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Miki D, Ochi H, Hayes CN, Abe H, Yoshima T, Aikata H, et al. Variation in the DEPDC5 locus is associated with progression to hepatocellular carcinoma in chronic hepatitis C virus carriers. Nat Genet. 2011;43:797–800.PubMedCrossRefGoogle Scholar
  24. 24.
    McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.PubMedCrossRefGoogle Scholar
  25. 25.
    Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet. 2010;86:6–22.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, et al. Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genomics. 2010;11:724.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Asahina Y, Tanaka K, Suzuki Y, Tamaki N, Hoshioka T, Kato T, et al. Association between IL28B gene variation and development of hepatocellular carcinoma after interferon therapy in patients with chronic hepatitis C. J Hepatol. 2011;54:S37.CrossRefGoogle Scholar
  28. 28.
    Fabris C, Falleti E, Cussigh A, Bitetto D, Fontanini E, Bignulin S, et al. IL-28B rs12979860 C/T allele distribution in patients with liver cirrhosis: role in the course of chronic viral hepatitis and the development of HCC. J Hepatol. 2011;54:716–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Bochud PY, Bibert S, Kutalik Z, Patin E, Guergnon J, Nalpas B, et al. IL28B alleles associated with poor hepatitis C virus (HCV) clearance protect against inflammation and fibrosis in patients infected with non-1 HCV genotypes. Hepatology. 2012;55:384–94.Google Scholar
  30. 30.
    Joshita S, Umemura T, Katsuyama Y, Ichikawa Y, Kimura T, Morita S, et al. Association of IL28B gene polymorphism with development of hepatocellular carcinoma in Japanese patients with chronic hepatitis C virus infection. Hum Immunol. 2012;73:298–300.Google Scholar
  31. 31.
    Miura M, Maekawa S, Kadokura M, Sueki R, Komase K, Shindo H, et al. Analysis of viral amino acids sequences and the IL28B SNP influencing the development of hepatocellular carcinoma in chronic hepatitis C. Hepatol Int. 2012;6:386–96.Google Scholar
  32. 32.
    Agundez JA, Garcia-Martin E, Maestro ML, Cuenca F, Martinez C, Ortega L, et al. Relation of IL28B gene polymorphism with biochemical and histological features in hepatitis C virus-induced liver disease. PLoS ONE. 2012;7:e37998.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Bruno S, Crosignani A, Maisonneuve P, Rossi S, Silini E, Mondelli MU. Hepatitis C virus genotype 1b as a major risk factor associated with hepatocellular carcinoma in patients with cirrhosis: a seventeen-year prospective cohort study. Hepatology. 2007;46:1350–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Bruno S, Silini E, Crosignani A, Borzio F, Leandro G, Bono F, et al. Hepatitis C virus genotypes and risk of hepatocellular carcinoma in cirrhosis: a prospective study. Hepatology. 1997;25:754–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Silini E, Bottelli R, Asti M, Bruno S, Candusso ME, Brambilla S, et al. Hepatitis C virus genotypes and risk of hepatocellular carcinoma in cirrhosis: a case-control study. Gastroenterology. 1996;111:199–205.PubMedCrossRefGoogle Scholar
  36. 36.
    Freeman AJ, Dore GJ, Law MG, Thorpe M, Von Overbeck J, Lloyd AR, et al. Estimating progression to cirrhosis in chronic hepatitis C virus infection. Hepatology. 2001;34:809–16.PubMedCrossRefGoogle Scholar
  37. 37.
    Moghaddam A, Melum E, Reinton N, Ring-Larsen H, Verbaan H, Bjoro K, et al. IL28B genetic variation and treatment response in patients with hepatitis C virus genotype 3 infection. Hepatology. 2011;53:746–54.PubMedCrossRefGoogle Scholar
  38. 38.
    Abe H, Ochi H, Maekawa T, Hayes CN, Tsuge M, Miki D, et al. Common variation of IL28 affects gamma-GTP levels and inflammation of the liver in chronically infected hepatitis C virus patients. J Hepatol. 2010;53:439–43.PubMedCrossRefGoogle Scholar
  39. 39.
    Li Q, Kawamura K, Ma G, Iwata F, Numasaki M, Suzuki N, et al. Interferon-lambda induces G1 phase arrest or apoptosis in oesophageal carcinoma cells and produces anti-tumour effects in combination with anti-cancer agents. Eur J Cancer. 2010;46:180–90.PubMedCrossRefGoogle Scholar
  40. 40.
    Lasfar A, Lewis-Antes A, Smirnov SV, Anantha S, Abushahba W, Tian B, et al. Characterization of the mouse IFN-lambda ligand-receptor system: IFN-lambdas exhibit antitumor activity against B16 melanoma. Cancer Res. 2006;66:4468–77.PubMedCrossRefGoogle Scholar
  41. 41.
    Abushahba W, Balan M, Castaneda I, Yuan Y, Reuhl K, Raveche E, et al. Antitumor activity of type I and type III interferons in BNL hepatoma model. Cancer Immunol Immunother. 2010;59:1059–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Sato A, Ohtsuki M, Hata M, Kobayashi E, Murakami T. Antitumor activity of IFN-lambda in murine tumor models. J Immunol. 2006;176:7686–94.PubMedGoogle Scholar
  43. 43.
    Zitzmann K, Brand S, Baehs S, Goke B, Meinecke J, Spottl G, et al. Novel interferon-lambdas induce antiproliferative effects in neuroendocrine tumor cells. Biochem Biophys Res Commun. 2006;344:1334–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Khan DA, Fatima Tuz Z, Khan FA, Mubarak A. Evaluation of diagnostic accuracy of APRI for prediction of fibrosis in hepatitis C patients. J Ayub Med Coll Abbottabad. 2008;20:122–6.PubMedGoogle Scholar
  45. 45.
    Sebastiani G, Vario A, Guido M, Noventa F, Plebani M, Pistis R, et al. Stepwise combination algorithms of non-invasive markers to diagnose significant fibrosis in chronic hepatitis C. J Hepatol. 2006;44:686–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Masaya Sato
    • 1
  • Naoya Kato
    • 2
  • Ryosuke Tateishi
    • 1
  • Ryosuke Muroyama
    • 2
  • Norie Kowatari
    • 2
  • Wenwen Li
    • 2
  • Kaku Goto
    • 2
  • Motoyuki Otsuka
    • 1
  • Shuichiro Shiina
    • 1
  • Haruhiko Yoshida
    • 1
  • Masao Omata
    • 3
  • Kazuhiko Koike
    • 1
  1. 1.Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
  2. 2.Unit of Disease Control Genome Medicine, Institute of Medical ScienceThe University of TokyoTokyoJapan
  3. 3.Yamanashi Prefectural Hospital OrganizationKofuJapan

Personalised recommendations