Advertisement

Journal of Gastroenterology

, Volume 48, Issue 11, pp 1249–1258 | Cite as

Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma

  • Shingo Tanaka
  • Koji Miyanishi
  • Masayoshi Kobune
  • Yutaka Kawano
  • Toshifumi Hoki
  • Tomohiro Kubo
  • Tsuyoshi Hayashi
  • Tsutomu Sato
  • Yasushi Sato
  • Rishu Takimoto
  • Junji Kato
Original Article—Liver, Pancreas, and Biliary Tract

Abstract

Background

The rate of onset of hepatocellular carcinoma (HCC) in patients with nonalcoholic steatohepatitis (NASH) has been reported recently to be comparable to that of patients with chronic hepatitis C. However, the precise mechanism contributing to carcinogenesis in the former remains unclear. Although increased oxidative stress is presumed to play a role in carcinogenesis in patients with NASH, this relationship remains to be directly proven. In this study, we investigated the involvement of oxidative DNA damage in hepatocarcinogenesis in patients with NASH.

Methods

Patients with nonalcoholic fatty liver disease who were treated at our university hospital were eligible for enrolment in the study(n = 49). The study cohort included 30 patients with NASH without HCC (NASH without HCC), six HCC patients with NASH (NASH–HCC), and 13 patients with simple steatosis. Quantitative immunohistochemistry with a KS-400 image analyzing system was used for 8-hydroxy-2′-deoxyguanosine (8-OHdG) detection.

Results

The 8-OHdG content in the liver tissue of NASH–HCC patients was significantly different from that in the other patients. The median immunostaining intensity was 8.605 in the NASH–HCC cases, which was significantly higher than that in the cases of NASH without HCC (4.845; P = 0.003). Multivariate analysis using hepatic 8-OHdG content as a factor in addition to age and fasting blood sugar revealed a significant difference in clinicopathological factors between NASH–HCC and NASH without HCC cases. Old age (P = 0.015) and high relative immunostaining intensity for intrahepatic 8-OHdG (P = 0.037) were identified as independent factors.

Conclusions

8-OHdG content in liver tissue may serve a marker of oxidative stress and could be a particularly useful predictor of hepatocarcinogenesis.

Keywords

Nonalcoholic steatohepatitis Nonalcoholic fatty liver disease Hepatocellular carcinoma Oxidative DNA damage 8-Hydroxy-2′-deoxyguanosine 

Abbreviations

ALD

Alcoholic liver disease

APRI

Aspartate aminotransferase to platelet ratio index

4-HNE

4-Hydroxy-2-nonenal

NAFLD

Nonalcoholic fatty liver disease

NAS

NAFLD activity score

NASH

Nonalcoholic steatohepatitis

NBNC-HCC

Non-B non-C hepatocellular carcinoma

8-OHdG

8-Hydroxy-2′-deoxyguanosine

ROS

Reactive oxygen species

SS

Simple steatosis

Notes

Conflict of interest

None.

References

  1. 1.
    Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17.CrossRefPubMedGoogle Scholar
  2. 2.
    Shariff MIF, Cox IJ, Gomaa AI, Khan SA, Gedroyc W, Taylor-Robinson SD. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Exp Rev Gastroenterol Hepatol. 2009;3:353–67.CrossRefGoogle Scholar
  3. 3.
    El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.CrossRefPubMedGoogle Scholar
  4. 4.
    Ascha MS, Hanouneh IA, Lopez R, Tamimi TA-R, Feldstein AF, Zein NN. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology. 2010;51:1972–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Yasui K, Hashimoto E, Tokushige K, Koike K, Shima T, Kanbara Y, et al. Clinical and pathological progression of non-alcoholic steatohepatitis to hepatocellular carcinoma. Hepatol Res. 2012;42:767–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Yasui K, Hashimoto E, Komorizono Y, Koike K, Arii S, Imai Y, et al. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2011;9:428–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Kawamura Y, Arase Y, Ikeda K, Seko Y, Imai N, Hosaka T, et al. Large-scale long-term follow-up study of Japanese patients with non-alcoholic fatty liver disease for the onset of hepatocellular carcinoma. Am J Gastroenterol. 2011;107:253–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Hashimoto E, Yatsuji S, Tobari M, Taniai M, Torii N, Tokushige K, et al. Hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. J Gastroenterol. 2009;44[Suppl 19]:89–95.CrossRefPubMedGoogle Scholar
  9. 9.
    Hashimoto E, Tokushige K. Hepatocellular carcinoma in non-alcoholic steatohepatitis: growing evidence of an epidemic? Hepatol Res. 2012;42:1–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush MA, et al. Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys. 2000;378:259–68.CrossRefPubMedGoogle Scholar
  11. 11.
    Bugianesi E. Non-alcoholic steatohepatitis and cancer. Clin Liver Dis. 2007;11:191–207.CrossRefPubMedGoogle Scholar
  12. 12.
    George DK, Goldwurm S, MacDonald GA, Cowley LL, Walker NI, Ward PJ, et al. Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis. Gastroenterology. 1998;114:311–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G–T and A–C substitutions. J Biol Chem. 1992;267:166–72.PubMedGoogle Scholar
  14. 14.
    Kasai H, Nishimura S. Hydroxylation of guanine in nucleosides and DNA at the C-8 position by heated glucose and oxygen radical-forming agents. Environ Health Perspect. 1986;67:111–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991;349:431–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Kato J, Kobune M, Nakamura T, Kuroiwa G, Takada K, Takimoto R, et al. Normalization of elevated hepatic 8-hydroxy-2′-deoxyguanosine levels in chronic hepatitis C patients by phlebotomy and low iron diet. Cancer Res. 2001;61:8697–702.PubMedGoogle Scholar
  17. 17.
    Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology. 2003;37:1202–19.CrossRefPubMedGoogle Scholar
  18. 18.
    Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142:1592–609.CrossRefPubMedGoogle Scholar
  20. 20.
    Takada A, Tsutsumi M, Okudaira M, Ohta Y, Tsujii T, Tanikawa K, et al. National survey of alcoholic liver disease in Japan (1968–91). J Gastroenterol Hepatol. 1995;10:509–16.CrossRefPubMedGoogle Scholar
  21. 21.
    Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract. 2002;55:65–85.CrossRefPubMedGoogle Scholar
  22. 22.
    Ogihara T, Kikuchi K, Matsuoka H, Fujita T, Higaki J, Horiuchi M, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2009). Hypertens Res. 2009;32:3–107.PubMedGoogle Scholar
  23. 23.
    Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–74.CrossRefPubMedGoogle Scholar
  24. 24.
    Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.CrossRefPubMedGoogle Scholar
  25. 25.
    Rowe JW, Wands JR, Mezey E, Waterbury LA, Wright JR, Tobin J, et al. Familial hemochromatosis: characteristics of the precirrhotic stage in a large kindred. Medicine (Baltimore). 1977;56:197–211.Google Scholar
  26. 26.
    Paradis V, Mathurin P, Kollinger M, Imbert-Bismut F, Charlotte F, Piton A, et al. In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features. J Clin Pathol. 1997;50:401–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Seki S, Kitada T, Yamada T, Sakaguchi H, Nakatani K, Wakasa K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol. 2002;37:56–62.CrossRefPubMedGoogle Scholar
  28. 28.
    Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114:147–52.PubMedGoogle Scholar
  29. 29.
    Tokushige K, Takakura M, Tsuchiya-Matsushita N, Taniai M, Hashimoto E, Shiratori K. Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis. J Hepatol. 2007;46:1104–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol. 2008;103:1372–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Sugimoto K, Takei Y. Clinicopathological features of non-alcoholic fatty liver disease. Hepatol Res. 2011;41:911–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Ichiba M, Maeta Y, Mukoyama T, Saeki T, Yasui S, Kanbe T, et al. Expression of 8-hydroxy-2′-deoxyguanosine in chronic liver disease and hepatocellular carcinoma. Liver Int. 2003;23:338–45.CrossRefPubMedGoogle Scholar
  33. 33.
    Jo M, Nishikawa T, Nakajima T, Okada Y, Yamaguchi K, Mitsuyoshi H, et al. Oxidative stress is closely associated with tumor angiogenesis of hepatocellular carcinoma. J Gastroenterol. 2011;46:809–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Nishikawa T, Nakajima T, Katagishi T, Okada Y, Jo M, Kagawa K, et al. Oxidative stress may enhance the malignant potential of human hepatocellular carcinoma by telomerase activation. Liver Int. 2009;29:846–56.CrossRefPubMedGoogle Scholar
  35. 35.
    Fujita N, Miyachi H, Tanaka H, Takeo M, Nakagawa N, Kobayashi Y, et al. Iron overload is associated with hepatic oxidative damage to DNA in nonalcoholic steatohepatitis. Cancer Epidemiol Biomarkers Prev. 2009;18:424–32.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Shingo Tanaka
    • 1
  • Koji Miyanishi
    • 1
  • Masayoshi Kobune
    • 1
  • Yutaka Kawano
    • 1
  • Toshifumi Hoki
    • 1
  • Tomohiro Kubo
    • 1
  • Tsuyoshi Hayashi
    • 1
  • Tsutomu Sato
    • 1
  • Yasushi Sato
    • 1
  • Rishu Takimoto
    • 1
  • Junji Kato
    • 1
  1. 1.Fourth Department of Internal MedicineSapporo Medical University School of MedicineChuo-kuJapan

Personalised recommendations