Journal of Gastroenterology

, Volume 48, Issue 10, pp 1151–1159 | Cite as

Oral contraceptive pill use is associated with reduced odds of nonalcoholic fatty liver disease in menstruating women: results from NHANES III

  • Su-Hsun Liu
  • Mariana Lazo
  • Ayman Koteish
  • W. H. Linda Kao
  • Ming-Hsiung Shih
  • Susanne Bonekamp
  • Ruben Hernaez
  • Jeanne M. Clark
Original Article—Liver, Pancreas, and Biliary Tract



Higher prevalence of nonalcoholic fatty liver disease (NAFLD) in men and postmenopausal women than in premenopausal women has suggested a potential role of sex hormones in the pathogenesis of the disease. We sought to evaluate the association between oral contraceptive pills (OCP) and NAFLD and to determine whether adiposity mediates any effect.


We included 4338 women aged 20–60 years who were enrolled in the Third National Health and Nutrition Examination Survey from 1988 to 1994 in a population-based cross-sectional study. We defined NAFLD as moderate–severe steatosis on ultrasonography in women without excessive alcohol use or other identifiable causes. OCP use was based on self-report and was categorized as never, former or current use.


The overall weighted prevalence of NAFLD was 11.6 % but lower in current (6.7 %) than in former (12.0 %) or never users (15.6 %, P = 0.016). In the multivariable model, current OCP users experienced a 50 % lower odds of NAFLD than never users (adjusted odds ratio 0.50; 95 % confidence interval 0.26, 0.98) after adjusting for age, race/ethnicity, smoking status, history of diabetes or hypertension and education. Further adjustment for body mass index or waist circumference significantly attenuated the OCP–NAFLD relationship.


In this large US-representative population, OCP use was associated with reduced odds of NAFLD. However, this association could be mediated or confounded by adiposity. Prospective studies are needed to further clarify the causal role of sex hormone.


Adiposity Nonalcoholic fatty liver disease Obesity Oral contraceptive pill Sex hormone 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Angulo P. Nonalcoholic fatty liver disease. NEJM. 2002;346:1221–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Lazo M, Clark JM. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis. 2008;28:339–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Clark JM. The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol. 2006;40(Suppl 1):S5–10.PubMedGoogle Scholar
  5. 5.
    Mohanty SR, Troy TN, Huo D, O’Brien BL, Jensen DM, Hart J. Influence of ethnicity on histological differences in non-alcoholic fatty liver disease. J Hepatol. 2009;50:797–804.PubMedCrossRefGoogle Scholar
  6. 6.
    Gutierrez-Grobe Y, Ponciano-Rodriguez G, Ramos MH, Uribe M, Mendez-Sanchez N. Prevalence of non alcoholic fatty liver disease in premenopausal, postmenopausal and polycystic ovary syndrome women. The role of estrogens. Ann Hepatol. 2010;9:402–9.PubMedGoogle Scholar
  7. 7.
    Shimizu I, Ito S. Protection of estrogens against the progression of chronic liver disease. Hepatol Res. 2007;37:239–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Elbers JM, de Roo GW, Popp-Snijders C, Nicolaas-Merkus A, Westerveen E, Joenje BW, et al. Effects of administration of 17beta-oestradiol on serum leptin levels in healthy postmenopausal women. Clin Endocrinol (Oxf). 1999;51:449–54.CrossRefGoogle Scholar
  9. 9.
    Haarbo J, Marslew U, Gotfredsen A, Christiansen C. Postmenopausal hormone replacement therapy prevents central distribution of body fat after menopause. Metabolism. 1991;40:1323–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Witteman J, Grobbee D, Kok F, Hofman A, Valkenburg H. Increased risk of atherosclerosis in women after the menopause. Br Med J. 1989;298:642–4.CrossRefGoogle Scholar
  11. 11.
    Bjoerkelund C, Lissner L, Andersson S, Lapidus L, Bengtsson C. Reproductive history in relation to relative weight and fat distribution. Int J Obes. 1996;20:213–9.Google Scholar
  12. 12.
    Saruç M, Yüceyar H, Ayhan S, Türkel N, Tuzcuoglu I, Can M. The association of dehydroepiandrosterone, obesity, waist–hip ratio and insulin resistance with fatty liver in postmenopausal women—a hyperinsulinemic euglycemic insulin clamp study. Hepatogastroenterology. 2003;50:771–4.PubMedGoogle Scholar
  13. 13.
    Clark JM, Brancati FL, Diehl AM. Nonalcoholic fatty liver disease. Gastroenterology. 2002;122:1649–57.PubMedCrossRefGoogle Scholar
  14. 14.
    McKenzie J, Fisher BM, Jaap AJ, Stanley A, Paterson K, Sattar N. Effects of HRT on liver enzyme levels in women with type 2 diabetes: a randomized placebo-controlled trial. Clin Endocrinol (Oxf). 2006;65:40–4.CrossRefGoogle Scholar
  15. 15.
    Park SH, Jeon WK, Kim SH, Kim HJ, Park DI, Cho YK, et al. Prevalence and risk factors of non-alcoholic fatty liver disease among Korean adults. J Gastroenterol Hepatol. 2006;21:138–43.PubMedCrossRefGoogle Scholar
  16. 16.
    National Center for Health Statistics. NHANES III data files, documentation and codebooks; 2011. Accessed 16 Nov 2012.
  17. 17.
    Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, et al. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. J Clin Endocrinol Metab. 2012;97:1159–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Hamaguchi M, Kojima T, Itoh Y, et al. The severity of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation. Am J Gastroenterol. 2007;102:2708–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Centers for Disease Control and Prevention. Alcohol and Public Health. Frequently asked questions: what is a standard drink in the United States? 2012. Accessed 16 Nov 2012.
  20. 20.
    National Center for Health Statistics. Third National Health and Nutrition Survey: hepatic steatosis assessment procedure manual. 2010. Accessed on 16 Nov 2012.
  21. 21.
    Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 2000;23:57–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Chumlea WC, Guo SS, Kuczmarski RJ, Flegal KM, Johnson CL, Heymsfield SB, et al. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord. 2002;26:1596–609.PubMedCrossRefGoogle Scholar
  23. 23.
    Freedman LS, Graubard BI, Schatzkin A. Statistical validation of intermediate endpoints for chronic diseases. Stat Med. 1992;11:167–78.PubMedCrossRefGoogle Scholar
  24. 24.
    VanderWeele TJ, Vansteelandt S. Odds ratios for mediation analysis for a dichotomous outcome. Am J Epidemiol. 2010;172:1339–48.PubMedCrossRefGoogle Scholar
  25. 25.
    StataCorp. Stata Statistical Software: release 11. College Station: StataCorp LP; 2009.Google Scholar
  26. 26.
    Gallo MF, Lopez LM, Grimes DA, Schulz KF, Helmerhorst FM. Combination contraceptives: effects on weight. Cochrane Database Syst Rev. 2011;(9). doi: 10.1002/14651858.CD003987.pub4.
  27. 27.
    Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28:521–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Klein SL, Jedlicka A, Pekosz A. The Xs and Y of immune responses to viral vaccines. Lancet Infect Dis. 2010;10:338–49.PubMedCrossRefGoogle Scholar
  29. 29.
    Pfeilschifter J, Köditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23:90–119.PubMedCrossRefGoogle Scholar
  30. 30.
    Rogers AER. The effect of 17beta-estradiol on production of cytokines in cultures of peripheral blood. Bone. 2001;29:30–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Lacort M, Leal AM, Liza M, Martín C, Martínez R, Ruiz-Larrea MB. Protective effect of estrogens and catecholestrogens against peroxidative membrane damage in vitro. Lipids. 1995;30:141–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Omoya T, Shimizu I, Zhou Y, Okamura Y, Inoue H, Lu G, et al. Effects of idoxifene and estradiol on NF-kappaB activation in cultured rat hepatocytes undergoing oxidative stress. Liver. 2001;21:183–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Caprio M, Zennaro MC, Feve B, Mammi C, Fabbri A, Rosano G. Potential role of progestogens in the control of adipose tissue and salt sensitivity via interaction with the mineralocorticoid receptor. Climacteric. 2008;11:258–64.PubMedCrossRefGoogle Scholar
  34. 34.
    Lacasa D, Le Liepvre X, Ferre P, Dugail I. Progesterone stimulates adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c gene expression. Potential mechanism for the lipogenic effect of progesterone in adipose tissue. J Biol Chem. 2001;276:11512–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Kjeld JM, Puah CM, Joplin GF. Changed levels of endogenous sex steroids in women on oral contraceptives. Br Med J. 1976;2:1354–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Gaspard UJ, Romus MA, Gillain D, Duvivier J, Demey-Ponsart E, Franchimont P. Plasma hormone levels in women receiving new oral contraceptives containing ethinyl estradiol plus levonorgestrel or desogestrel. Contraception. 1983;27:577–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Caldwell SH, Harris DM, Patrie JT, Hespenheide EE. Is NASH underdiagnosed among African Americans? Am J Gastroenterol. 2002;97:1496–500.PubMedCrossRefGoogle Scholar
  38. 38.
    Solga SF, Clark JM, Alkhuraishi AR, Torbenson M, Tabesh A, Schweitzer M, et al. Race and comorbid factors predict nonalcoholic fatty liver disease histopathology in severely obese patients. Surg Obes Relat Dis. 2005;1:6–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Conway JM, Yanovski SZ, Avila NA, Hubbard VS. Visceral adipose tissue differences in black and white women. Am J Clin Nutr. 1995;61:765–71.PubMedGoogle Scholar
  40. 40.
    Lovejoy JC, de la Bretonne JA, Klemperer M, Tulley R. Abdominal fat distribution and metabolic risk factors: effects of race. Metabolism. 1996;45:1119–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Randolph JF Jr, Sowers M, Gold EB, Mohr BA, Luborsky J, Santoro N, et al. Reproductive hormones in the early menopausal transition: relationship to ethnicity, body size, and menopausal status. J Clin Endocrinol Metab. 2003;88:1516–22.PubMedCrossRefGoogle Scholar
  42. 42.
    Randolph JF Jr, Sowers M, Bondarenko IV, Harlow SD, Luborsky JL, Little RJ. Change in estradiol and follicle-stimulating hormone across the early menopausal transition: effects of ethnicity and age. J Clin Endocrinol Metab. 2004;89:1555–61.PubMedCrossRefGoogle Scholar
  43. 43.
    Ukkola O, Gagnon J, Rankinen T, Thompson PA, Hong Y, Leon AS, et al. Age, body mass index, race and other determinants of steroid hormone variability: the HERITAGE Family Study. Eur J Endocrinol. 2001;145:1–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  • Su-Hsun Liu
    • 1
  • Mariana Lazo
    • 1
  • Ayman Koteish
    • 2
  • W. H. Linda Kao
    • 1
  • Ming-Hsiung Shih
    • 3
  • Susanne Bonekamp
    • 4
  • Ruben Hernaez
    • 1
    • 2
    • 5
  • Jeanne M. Clark
    • 1
    • 2
  1. 1.Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  2. 2.Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Family MedicineFar Eastern Memorial HospitalNew Taipei CityTaiwan
  4. 4.Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Department of MedicineWashington Hospital Center/Georgetown University HospitalWashingtonUSA

Personalised recommendations