Journal of Gastroenterology

, Volume 47, Issue 9, pp 941–960 | Cite as

Therapy of metastatic pancreatic neuroendocrine tumors (pNETs): recent insights and advances

  • Tetsuhide Ito
  • Hisato Igarashi
  • Robert T. Jensen
Review

Abstract

Neuroendocrine tumors (NETs) [carcinoids, pancreatic neuroendocrine tumors (pNETs)] are becoming an increasing clinical problem because not only are they increasing in frequency, but they can frequently present with advanced disease that requires diagnostic and treatment approaches different from those used in the neoplasms that most physicians are used to seeing and treating. In the past few years there have been numerous advances in all aspects of NETs including: an understanding of their unique pathogenesis; specific classification systems developed which have prognostic value; novel methods of tumor localization developed; and novel treatment approaches described. In patients with advanced metastatic disease these include the use of newer chemotherapeutic approaches, an increased understanding of the role of surgery and cytoreductive methods, the development of methods for targeted delivery of cytotoxic agents, and the development of targeted medical therapies (everolimus, sunitinib) based on an increased understanding of the disease biology. Although pNETs and gastrointestinal NETs share many features, recent studies show they differ in pathogenesis and in many aspects of diagnosis and treatment, including their responsiveness to different therapies. Because of limited space, this review will be limited to the advances made in the management and treatment of patients with advanced metastatic pNETs over the past 5 years.

Keywords

Neuroendocrine tumor Pancreatic endocrine tumor Liver metastases Gastrinoma Insulinoma Surgery Chemotherapy Streptozotocin Everolimus Sunitinib Somatostatin Octreotide Lanreotide Hepatic transarterial embolization Liver transplantation Peptide receptor radionuclide therapy Somatostatin receptor SIRT Chemoembolization Unresectable liver metastases 

Abbreviations

ACTHomas

ACTH-secreting pancreatic neuroendocrine tumors

CNS

Central nervous system

ENETS

European Neuroendocrine Tumor Society

ESMO

European Society for Medical Oncology

GI

Gastrointestinal

GI-NETs

Gastrointestinal neuroendocrine tumors (carcinoids of gastrointestinal tract)

TAE/TACE

Transarterial embolization/chemoembolization

IGF

Insulin-like growth factor

UICC/AJCC/WHO

International Union for Cancer Control/American Joint Cancer Committee/World Health Organization

MRI

Magnetic resonance imaging

NANETS

North American Neuroendocrine Tumor Society

NCCN

National Comprehensive Cancer Network

NETs

Neuroendocrine tumors (carcinoids, pancreatic neuroendocrine tumors)

NF-pNETs

Nonfunctional pancreatic neuroendocrine tumors

pNETs

Pancreatic neuroendocrine tumors

PDGFRs

Platelet-derived growth factor receptors

PRRT

Peptide receptor radionuclide therapy

RFA

Radiofrequency ablation

SIRT

Selective internal radiation

SRS

Somatostatin receptor scintigraphy

VEGFR

Vascular endothelial growth factor receptor

VIPomas

Vasoactive intestinal peptide-secreting pancreatic neuroendocrine tumors

Notes

Acknowledgments

This work was partially supported by intramural funds of NIDDK, NIH.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9:61–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199–203.PubMedCrossRefGoogle Scholar
  3. 3.
    Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology. 2008;135:1469–92.PubMedCrossRefGoogle Scholar
  4. 4.
    de Wilde RF, Edil BH, Hruban RH, Maitra A. Well-differentiated pancreatic neuroendocrine tumors: from genetics to therapy. Nat Rev Gastroenterol Hepatol. 2012;9:199–208.PubMedCrossRefGoogle Scholar
  5. 5.
    Capurso G, Festa S, Valente R, et al. Molecular pathology and genetics of pancreatic endocrine tumours. J Mol Endocrinol. 2012;49:R37–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Oberg K. Neuroendocrine tumors of the digestive tract: impact of new classifications and new agents on therapeutic approaches. Curr Opin Oncol. 2012;24:433–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Oberg K. Pancreatic endocrine tumors. Semin Oncol. 2010;37:594–618.PubMedCrossRefGoogle Scholar
  8. 8.
    Rindi G, Falconi M, Klersy C, et al. TNM staging of neoplasms of the endocrine pancreas: results from a large international cohort study. J Natl Cancer Inst. 2012;104:764–77.PubMedCrossRefGoogle Scholar
  9. 9.
    Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39:707–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Klimstra DS, Modlin IR, Adsay NV, et al. Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set. Am J Surg Pathol. 2010;34:300–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Pape UF, Jann H, Muller-Nordhorn J, et al. Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer. 2008;113:256–65.PubMedCrossRefGoogle Scholar
  12. 12.
    Kloppel G. Tumour biology and histopathology of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab. 2007;21:15–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Bettini R, Boninsegna L, Mantovani W, et al. Prognostic factors at diagnosis and value of WHO classification in a mono-institutional series of 180 non-functioning pancreatic endocrine tumours. Ann Oncol. 2008;19:903–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Sundin A, Vullierme MP, Kaltsas G, Plockinger U. ENETS guidelines for the standards of care in patients with neuroendocrine tumours: radiological examinations in patients with neuroendocrine tumours. Neuroendocrinology. 2009;90:167–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Oberg K. Gallium-68 somatostatin receptor PET/CT: Is it time to replace (111)Indium DTPA octreotide for patients with neuroendocrine tumors? Endocrine. 2012;42:3–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Jensen RT, Delle Fave G. Promising advances in the treatment of malignant pancreatic endocrine tumors. N Engl J Med. 2011;364:564–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:501–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Pavel M. Translation of molecular pathways into clinical trials of neuroendocrine tumors. Neuroendocrinology. 2012 [Epub ahead of print].Google Scholar
  20. 20.
    Halperin DM, Kulke MH. Management of pancreatic neuroendocrine tumors. Gastroenterol Clin North Am. 2012;41:119–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Harring TR, Nguyen NT, Goss JA, O’Mahony CA. Treatment of liver metastases in patients with neuroendocrine tumors: a comprehensive review. Int J Hepatol. 2011;2011:154541.PubMedGoogle Scholar
  22. 22.
    van Vliet EI, Teunissen JJ, Kam BL, de Jong M, Krenning EP, Kwekkeboom DJ. Treatment of gastroenteropancreatic neuroendocrine tumors with peptide receptor radionuclide therapy. Neuroendocrinology. 2012 [Epub ahead of print].Google Scholar
  23. 23.
    Kwekkeboom DJ, Kam BL, Van Essen M, et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17:R53–73.PubMedCrossRefGoogle Scholar
  24. 24.
    Kwekkeboom DJ, Krenning EP, Scheidhauer K, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: somatostatin receptor imaging with (111) In-pentetreotide. Neuroendocrinology. 2009;90:184–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Jensen RT, Cadiot G, Brandi ML, et al. ENETS consensus guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology. 2012;95:98–119.PubMedCrossRefGoogle Scholar
  26. 26.
    Kulke MH, Anthony LB, Bushnell DL, et al. NANETS treatment guidelines: well-differentiated neuroendocrine tumors of the stomach and pancreas. Pancreas. 2010;39:735–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Oberg K, Jelic S. Neuroendocrine gastroenteropancreatic tumors: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20 Suppl 4:147–9.PubMedGoogle Scholar
  28. 28.
    Janson ET, Sorbye H, Welin S, et al. Nordic guidelines 2010 for diagnosis and treatment of gastroenteropancreatic neuroendocrine tumours. Acta Oncol. 2010;49:740–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Pavel M, Baudin E, Couvelard A, et al. ENETS consensus guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95:157–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Steinmuller T, Kianmanesh R, Falconi M, et al. Consensus guidelines for the management of patients with liver metastases from digestive (neuro) endocrine tumors: foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2008;87:47–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Pavel ME, Hainsworth JD, Baudin E, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378:2005–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Kos-Kudla B, O’Toole D, Falconi M, et al. ENETS consensus guidelines for the management of bone and lung metastases from neuroendocrine tumors. Neuroendocrinology. 2010;91:341–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Kianmanesh R, Ruszniewski P, Rindi G, et al. ENETS consensus guidelines for the management of peritoneal carcinomatosis from neuroendocrine tumors. Neuroendocrinology. 2010;91:333–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Krampitz GW, Norton JA, Poultsides GA, Visser B, Sun L, Jensen RT. Lymph nodes and survival in duodenal and pancreatic neuroendocrine tumors. Arch. Surg. 2012;(in press) (abstr).Google Scholar
  35. 35.
    Kulke MH, Bendell J, Kvols L, Picus J, Pommier R, Yao J. Evolving diagnostic and treatment strategies for pancreatic neuroendocrine tumors. J Hematol Oncol. 2011;4:29–37.PubMedCrossRefGoogle Scholar
  36. 36.
    Kimura W, Kuroda A, Morioka Y. Clinical pathology of endocrine tumors of the pancreas. Analysis of autopsy cases. Dig Dis Sci. 1991;36:933–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Ito T, Sasano H, Tanaka M, et al. Epidemiological study of gastroenteropancreatic neuroendocrine tumors in Japan. J Gastroenterol. 2010;45:234–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Haynes AB, Deshpande V, Ingkakul T, et al. Implications of incidentally discovered, nonfunctioning pancreatic endocrine tumors: short-term and long-term patient outcomes. Arch Surg. 2011;146:534–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Gullo L, Migliori M, Falconi M, et al. Nonfunctioning pancreatic endocrine tumors: a multicenter clinical study. Am J Gastroenterol. 2003;98:2435–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Jensen RT. Endocrine neoplasms of the pancreas. In: Yamada T, Alpers DH, Kalloo AN, Kaplowitz N, Owyang C, editors. Textbook of gastroenterology. Oxford, England: Wiley-Blackwell; 2009. p. 1875–920.Google Scholar
  42. 42.
    Halfdanarson TR, Rabe KG, Rubin J, Petersen GM. Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann Oncol. 2008;10:1727–33.CrossRefGoogle Scholar
  43. 43.
    Zerbi A, Falconi M, Rindi G, et al. Clinicopathological features of pancreatic endocrine tumors: a prospective multicenter study in Italy of 297 sporadic cases. Am J Gastroenterol. 2010;105:1421–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Lepage C, Rachet B, Coleman MP. Survival from malignant digestive endocrine tumors in England and Wales: a population-based study. Gastroenterology. 2007;132:899–904.PubMedCrossRefGoogle Scholar
  45. 45.
    Yao JC, Eisner MP, Leary C, et al. Population-based study of islet cell carcinoma. Ann Surg Oncol. 2007;14:3492–500.PubMedCrossRefGoogle Scholar
  46. 46.
    Jensen RT. Natural history of digestive endocrine tumors. In: Mignon M, Colombel JF, editors. Recent advances in pathophysiology and management of inflammatory bowel diseases and digestive endocrine tumors. Paris, France: John Libbey Eurotext Publishing Co.; 1999. p. 192–219.Google Scholar
  47. 47.
    Yu F, Venzon DJ, Serrano J, et al. Prospective study of the clinical course, prognostic factors and survival in patients with longstanding Zollinger-Ellison syndrome. J Clin Oncol. 1999;17:615–30.PubMedGoogle Scholar
  48. 48.
    Weber HC, Venzon DJ, Lin JT, et al. Determinants of metastatic rate and survival in patients with Zollinger-Ellison syndrome: a prospective long-term study. Gastroenterology. 1995;108:1637–49.PubMedCrossRefGoogle Scholar
  49. 49.
    Sutliff VE, Doppman JL, Gibril F, et al. Growth of newly diagnosed, untreated metastatic gastrinomas and predictors of growth patterns. J Clin Oncol. 1997;15:2420–31.PubMedGoogle Scholar
  50. 50.
    Durante C, Boukheris H, Dromain C, et al. Prognostic factors influencing survival from metastatic (stage IV) gastroenteropancreatic well-differentiated endocrine carcinoma. Endocr Relat Cancer. 2009;16:585–97.PubMedCrossRefGoogle Scholar
  51. 51.
    Panzuto F, Nasoni S, Falconi M, et al. Prognostic factors and survival in endocrine tumor patients:comparison between gastrointestinal and pancreatic localization. Endocr Relat Cancer. 2005;12:1083–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Sarmiento JM, Que FG. Hepatic surgery for metastases from neuroendocrine tumors. Surg Oncol Clin North Am. 2003;12:231–42.CrossRefGoogle Scholar
  53. 53.
    Norton JA, Warren RS, Kelly MG, Zurek MB, Jensen RT. Aggressive surgery for metastatic liver neuroendocrine tumors. Surgery. 2003;134:1057–65.PubMedCrossRefGoogle Scholar
  54. 54.
    Solorzano CC, Lee JE, Pisters PW, et al. Nonfunctioning islet cell carcinoma of the pancreas: survival results in a contemporary series of 163 patients. Surgery. 2001;130:1078–85.PubMedCrossRefGoogle Scholar
  55. 55.
    Helle KB. Regulatory peptides from chromogranin A and secretogranin II. Cell Mol Neurobiol. 2010;30:1145–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Niederle MB, Hackl M, Kaserer K, Niederle B. Gastroenteropancreatic neuroendocrine tumours: the current incidence and staging based on the WHO and European Neuroendocrine Tumour Society classification: an analysis based on prospectively collected parameters. Endocr Relat Cancer. 2010;17:909–18.PubMedCrossRefGoogle Scholar
  57. 57.
    Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO World Health Organization classification of tumors and genetics of the digestive system. Lyon, France: IARC press; 2010.Google Scholar
  58. 58.
    Rindi G, Kloppel G, Alhman H, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449:395–401.PubMedCrossRefGoogle Scholar
  59. 59.
    Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC Cancer Staging Manual. New York: Springer; 2010.Google Scholar
  60. 60.
    Panzuto F, Boninsegna L, Fazio N, et al. Metastatic and locally advanced pancreatic endocrine carcinomas: analysis of factors associated with disease progression. J Clin Oncol. 2011;29:2372–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Pomianowska E, Gladhaug IP, Grzyb K, et al. Survival following resection of pancreatic endocrine tumors: importance of R-status and the WHO and TNM classification systems. Scand J Gastroenterol. 2010;45:971–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Scarpa A, Mantovani W, Capelli P, et al. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol. 2010;23:824–33.PubMedCrossRefGoogle Scholar
  63. 63.
    Kloppel G. Classification and pathology of gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2011;18 Suppl 1:S1–16.PubMedCrossRefGoogle Scholar
  64. 64.
    Ekeblad S, Skogseid B, Dunder K, Oberg K, Eriksson B. Prognostic factors and survival in 324 patients with pancreatic endocrine tumor treated at a single institution. Clin Cancer Res. 2008;14:7798–803.PubMedCrossRefGoogle Scholar
  65. 65.
    Tsuchiya A, Koizumi M, Ohtani H. World Health Organization Classification (2004)-based reevaluation of 95 nonfunctioning “malignant” pancreatic endocrine tumors reported in Japan. Surg Today. 2009;39:500–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Hentic O, Couvelard A, Rebours V, et al. Ki-67 index, tumor differentiation, and extent of liver involvement are independent prognostic factors in patients with liver metastases of digestive endocrine carcinomas. Endocr Relat Cancer. 2011;18:51–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Krausz Y, Freedman N, Rubinstein R, et al. (68)Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with (111)In-DTPA-Octreotide (OctreoScan(R)). Mol Imaging Biol. 2011;13:583–93.PubMedCrossRefGoogle Scholar
  68. 68.
    Nilsson O, Van Cutsem E, Delle Fave G, et al. Poorly differentiated carcinomas of the foregut (gastric, duodenal and pancreatic). Neuroendocrinology. 2006;84:212–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Kloppel G, Couvelard A, Perren A, et al. ENETS guidelines for the standards of care in patients with neuroendocrine tumors: towards a standardized approach to the diagnosis of gastroenteropancreatic neuroendocrine tumors and their prognostic stratification. Neuroendocrinology. 2009;90:166.Google Scholar
  70. 70.
    Krudy AG, Doppman JL, Jensen RT, et al. Localization of islet cell tumors by dynamic CT: comparison with plain CT, arteriography, sonography and venous sampling. Am J Roentgenol. 1984;143:585–9.Google Scholar
  71. 71.
    Gibril F, Reynolds JC, Doppman JL, et al. Somatostatin receptor scintigraphy: its sensitivity compared with that of other imaging methods in detecting primary and metastatic gastrinomas: a prospective study. Ann Intern Med. 1996;125:26–34.PubMedGoogle Scholar
  72. 72.
    Gibril F, Jensen RT. Diagnostic uses of radiolabelled somatostatin-receptor analogues in gastroenteropancreatic endocrine tumors. Dig Liver Dis. 2004;36:S106–20.PubMedCrossRefGoogle Scholar
  73. 73.
    Ruf J, Heuck F, Schiefer J, et al. Impact of Multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology. 2010;91:101–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Buchmann I, Henze M, Engelbrecht S, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34:1617–26.PubMedCrossRefGoogle Scholar
  75. 75.
    Putzer D, Gabriel M, Henninger B, et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med. 2009;50:1214–21.PubMedCrossRefGoogle Scholar
  76. 76.
    Termanini B, Gibril F, Reynolds JC, et al. Value of somatostatin receptor scintigraphy: a prospective study in gastrinoma of its effect on clinical management. Gastroenterology. 1997;112:335–47.PubMedCrossRefGoogle Scholar
  77. 77.
    Schillaci O, Spanu A, Scopinaro F, et al. Somatostatin receptor scintigraphy with 111In-pentetreotide in non-functioning gastroenteropancreatic neuroendocrine tumors. Int J Oncol. 2003;23:1687–95.PubMedGoogle Scholar
  78. 78.
    Gibril F, Doppman JL, Reynolds JC, et al. Bone metastases in patients with gastrinomas: a prospective study of bone scanning, somatostatin receptor scanning, and MRI in their detection, their frequency, location and effect of their detection on management. J Clin Oncol. 1998;16:1040–53.PubMedGoogle Scholar
  79. 79.
    Imamura M. Recent standardization of treatment strategy for pancreatic neuroendocrine tumors. World J Gastroenterol. 2010;16:4519–25.PubMedCrossRefGoogle Scholar
  80. 80.
    Doppman JL, Miller DL, Chang R, et al. Gastrinomas: localization by means of selective intraarterial injection of secretin. Radiology. 1990;174:25–9.PubMedGoogle Scholar
  81. 81.
    Gibril F, Doppman JL, Chang R, Weber HC, Termanini B, Jensen RT. Metastatic gastrinomas: localization with selective arterial injection of secretin. Radiology. 1996;198:77–84.PubMedGoogle Scholar
  82. 82.
    Morganstein DL, Lewis DH, Jackson J, et al. The role of arterial stimulation and simultaneous venous sampling in addition to cross-sectional imaging for localisation of biochemically proven insulinoma. Eur Radiol. 2009;19:2467–73.PubMedCrossRefGoogle Scholar
  83. 83.
    Strosberg JR, Coppola D, Klimstra DS, et al. The NANETS consensus guidelines for the diagnosis and management of poorly differentiated (high-grade) extrapulmonary neuroendocrine carcinomas. Pancreas. 2010;39:799–800.PubMedCrossRefGoogle Scholar
  84. 84.
    Iwasa S, Morizane C, Okusaka T, et al. Cisplatin and etoposide as first-line chemotherapy for poorly differentiated neuroendocrine carcinoma of the hepatobiliary tract and pancreas. Jpn J Clin Oncol. 2010;40:313–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Osefo N, Ito T, Jensen RT. Gastric acid hypersecretory states: recent insights and advances. Curr Gastroenterol Rep. 2009;11:433–41.PubMedCrossRefGoogle Scholar
  86. 86.
    Jensen RT, Niederle B, Mitry E, et al. Gastrinoma (duodenal and pancreatic). Neuroendocrinology. 2006;84:173–82.PubMedCrossRefGoogle Scholar
  87. 87.
    de Herder WW, van SE, Kwekkeboom D, Feelders RA. New therapeutic options for metastatic malignant insulinomas. Clin Endocrinol (Oxf). 2011;75:277–84.CrossRefGoogle Scholar
  88. 88.
    Vezzosi D, Bennet A, Rochaix P, et al. Octreotide in insulinoma patients: efficacy on hypoglycemia, relationships with Octreoscan scintigraphy and immunostaining with anti-sst2A and anti-sst5 antibodies. Eur J Endocrinol. 2005;152:757–67.PubMedCrossRefGoogle Scholar
  89. 89.
    Vezzosi D, Bennet A, Courbon F, Caron P. Short- and long-term somatostatin analogue treatment in patients with hypoglycaemia related to endogenous hyperinsulinism. Clin Endocrinol (Oxf). 2008;68:904–11.CrossRefGoogle Scholar
  90. 90.
    Vleggaar FP, Bij de Vaate EA, Valk GD, Leguit RJ, Siersema PD. Endoscopic ultrasound-guided ethanol ablation of a symptomatic sporadic insulinoma. Endoscopy. 2011;43 Suppl 2 UCTN:E328–9.Google Scholar
  91. 91.
    Levy MJ, Thompson GB, Topazian MD, Callstrom MR, Grant CS, Vella A. US-guided ethanol ablation of insulinomas: a new treatment option. Gastrointest Endosc. 2012;75:200–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Jurgensen C, Schuppan D, Neser F, Ernstberger J, Junghans U, Stolzel U. EUS-guided alcohol ablation of an insulinoma. Gastrointest Endosc. 2006;63:1059–62.PubMedCrossRefGoogle Scholar
  93. 93.
    Kvols LK, Turaga KK, Strosberg J, Choi J. Role of interventional radiology in the treatment of patients with neuroendocrine metastases in the liver. J Natl Compr Canc Netw. 2009;7:765–72.PubMedGoogle Scholar
  94. 94.
    Fiebrich HB, Siemerink EJ, Brouwers AH, et al. Everolimus induces rapid plasma glucose normalization in insulinoma patients by effects on tumor as well as normal tissues. Oncologist. 2011;16:783–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Kulke MH, Bergsland EK, Yao JC. Glycemic control in patients with insulinoma treated with everolimus. N Engl J Med. 2009;360:195–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Ong GS, Henley DE, Hurley D, Turner JH, Claringbold PG, Fegan PG. Therapies for the medical management of persistent hypoglycaemia in two cases of inoperable malignant insulinoma. Eur J Endocrinol. 2010;162:1001–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Chandra P, Yarandi SS, Khazai N, Jacobs S, Umpierrez GE. Management of intractable hypoglycemia with Yttirum-90 radioembolization in a patient with malignant insulinoma. Am J Med Sci. 2010;340:414–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Falconi M, Bartsch DK, Eriksson B, et al. ENETS consensus guidelines for the management of patients with digestive neuroendocrine neoplasms of the digestive system: well-differentiated pancreatic non-functioning tumors. Neuroendocrinology. 2012;95:120–34.PubMedCrossRefGoogle Scholar
  99. 99.
    Falconi M, Bettini R, Boninsegna L, Crippa S, Butturini G, Pederzoli P. Surgical strategy in the treatment of pancreatic neuroendocrine tumors. JOP. 2006;7:150–6.PubMedGoogle Scholar
  100. 100.
    Carty SE, Jensen RT, Norton JA. Prospective study of aggressive resection of metastatic pancreatic endocrine tumors. Surgery. 1992;112:1024–31.PubMedGoogle Scholar
  101. 101.
    Falconi M, Bassi C, Bonora A, et al. Role of chemoembolization in synchronous liver metastases from pancreatic endocrine tumours. Dig Surg. 1999;16:32–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Chamberlain RS, Canes D, Brown KT, et al. Hepatic neuroendocrine metastases: does intervention alter outcomes? J Am Coll Surg. 2000;190:432–45.PubMedCrossRefGoogle Scholar
  103. 103.
    Bettini R, Mantovani W, Boninsegna L, et al. Primary tumour resection in metastatic nonfunctioning pancreatic endocrine carcinomas. Dig Liver Dis. 2009;41:49–55.PubMedCrossRefGoogle Scholar
  104. 104.
    Norton JA, Harris EJ, Chen Y, et al. Pancreatic endocrine tumors with major vascular abutment, involvement, or encasement and indication for resection. Arch Surg. 2011;146:724–32.PubMedCrossRefGoogle Scholar
  105. 105.
    Tsuchikawa T, Kondo S, Hirano S, et al. Distal pancreatectomy and portal vein resection without vascular reconstruction for endocrine tumors with massive intraportal growth: report of a case. Hepatogastroenterology. 2011;58:1029–31.PubMedGoogle Scholar
  106. 106.
    Hellman P, Andersson M, Rastad J, et al. Surgical strategy for large or malignant endocrine pancreatic tumors. World J Surg. 2000;24:1353–60.PubMedCrossRefGoogle Scholar
  107. 107.
    Handa M, Nakada T, Kajitsuka S, Hirose M, Sato Y. Portosystemic A-V fistula and portal hypertension associated with islet-cell tumor of the pancreas. Nippon Geka Gakkai Zasshi. 1985;86:953–8.PubMedGoogle Scholar
  108. 108.
    Kawakami H, Kuwatani M, Hirano S, et al. Pancreatic endocrine tumors with intraductal growth into the main pancreatic duct and tumor thrombus within the portal vein: a case report and review of the literature. Intern Med. 2007;46:273–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Ochiai T, Masuda T, Nishizawa M, et al. Curative resection of a huge malignant pancreatic endocrine tumor by pancreatoduodenectomy with portal and superior mesenteric vein resection and reconstruction using the right ovarian vein: report of a case. Surg Today. 2011;41:1260–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Okuno M, Sakaguchi S, Nagayama M, et al. Nonfunctioning islet cell carcinoma presenting bleeding gastric varices and splenomegaly. Jpn J Surg. 1984;14:244–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Yamaguchi T, Takahashi H, Kagawa R, et al. Nonfunctioning pancreatic endocrine tumor presenting with hemorrhage from isolated gastric varices. Am Surg. 2005;71:1027–30.PubMedGoogle Scholar
  112. 112.
    Pascher A, Klupp J, Neuhaus P. Transplantation in the management of metastatic endocrine tumours. Best Pract Res Clin Gastroenterol. 2005;19:637–48.PubMedCrossRefGoogle Scholar
  113. 113.
    Olausson M, Friman S, Herlenius G, et al. Orthotopic liver or multivisceral transplantation as treatment of metastatic neuroendocrine tumors. Liver Transpl. 2007;13:327–33.PubMedCrossRefGoogle Scholar
  114. 114.
    Le Treut YP, Gregoire E, Belghiti J, et al. Predictors of long-term survival after liver transplantation for metastatic endocrine tumors: an 85-case French multicentric report. Am J Transplant. 2008;8:1205–13.PubMedCrossRefGoogle Scholar
  115. 115.
    Gregoire E, Le Treut YP. Liver transplantation for primary or secondary endocrine tumors. Transpl Int. 2010;23:704–11.PubMedCrossRefGoogle Scholar
  116. 116.
    Murthy R, Kamat P, Nunez R, et al. Yttrium-90 microsphere radioembolotherapy of hepatic metastatic neuroendocrine carcinomas after hepatic arterial embolization. J Vasc Interv Radiol. 2008;19:145–51.PubMedCrossRefGoogle Scholar
  117. 117.
    Vogl TJ, Naguib NN, Zangos S, Eichler K, Hedayati A, Nour-Eldin NE. Liver metastases of neuroendocrine carcinomas: interventional treatment via transarterial embolization, chemoembolization and thermal ablation. Eur J Radiol. 2009;72:517–28.PubMedCrossRefGoogle Scholar
  118. 118.
    Eriksson J, Stalberg P, Nilsson A, et al. Surgery and radiofrequency ablation for treatment of liver metastases from midgut and foregut carcinoids and endocrine pancreatic tumors. World J Surg. 2008;32:930–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Basuroy R, Srirajaskanthan R, Ramage JK. A multimodal approach to the management of neuroendocrine tumour liver metastases. Int J Hepatol. 2012;2012:819193.PubMedGoogle Scholar
  120. 120.
    O’Toole D, Ruszniewski P. Chemoembolization and other ablative therapies for liver metastases of gastrointestinal endocrine tumours. Best Pract Res Clin Gastroenterol. 2005;19:585–94.PubMedCrossRefGoogle Scholar
  121. 121.
    Elias D, Goere D, Leroux G, et al. Combined liver surgery and RFA for patients with gastroenteropancreatic endocrine tumors presenting with more than 15 metastases to the liver. Eur J Surg Oncol. 2009;35:1092–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Karabulut K, Akyildiz HY, Lance C, et al. Multimodality treatment of neuroendocrine liver metastases. Surgery. 2011;150:316–25.PubMedCrossRefGoogle Scholar
  123. 123.
    Akyildiz HY, Mitchell J, Milas M, Siperstein A, Berber E. Laparoscopic radiofrequency thermal ablation of neuroendocrine hepatic metastases: long-term follow-up. Surgery. 2010;148:1288–93.PubMedCrossRefGoogle Scholar
  124. 124.
    Mazzaglia PJ, Berber E, Milas M, Siperstein AE. Laparoscopic radiofrequency ablation of neuroendocrine liver metastases: a 10-year experience evaluating predictors of survival. Surgery. 2007;142:10–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Toumpanakis C, Meyer T, Caplin ME. Cytotoxic treatment including embolization/chemoembolization for neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab. 2007;21:131–44.Google Scholar
  126. 126.
    Gu P, Wu J, Newman E, Muggia F. Treatment of liver metastases in patients with neuroendocrine tumors of gastroesophageal and pancreatic origin. Int J Hepatol. 2012;2012:131659.PubMedGoogle Scholar
  127. 127.
    Reddy SK, Clary BM. Neuroendocrine liver metastases. Surg Clin North Am. 2010;90:853–61.PubMedCrossRefGoogle Scholar
  128. 128.
    Nazario J, Gupta S. Transarterial liver-directed therapies of neuroendocrine hepatic metastases. Semin Oncol. 2010;37:118–26.PubMedCrossRefGoogle Scholar
  129. 129.
    Osborne DA, Zervos EE, Strosberg J, et al. Improved outcome with cytoreduction versus embolization for symptomatic hepatic metastases of carcinoid and neuroendocrine tumors. Ann Surg Oncol. 2006;13:572–81.PubMedCrossRefGoogle Scholar
  130. 130.
    Srirajaskanthan R, Toumpanakis C, Meyer T, Caplin ME. Review article: future therapies for management of metastatic gastroenteropancreatic neuroendocrine tumours. Aliment Pharmacol Ther. 2009;29:1143–54.PubMedCrossRefGoogle Scholar
  131. 131.
    Lewis MA, Jaramillo S, Roberts L, Fleming CJ, Rubin J, Grothey A. Hepatic artery embolization for neuroendocrine tumors: postprocedural management and complications. Oncologist. 2012;17:725–31.PubMedCrossRefGoogle Scholar
  132. 132.
    Deleporte A, Flamen P, Hendlisz A. State of the art: radiolabeled microspheres treatment for liver malignancies. Expert Opin Pharmacother. 2010;11:579–86.PubMedCrossRefGoogle Scholar
  133. 133.
    Kennedy AS, Salem R. Radioembolization (yttrium-90 microspheres) for primary and metastatic hepatic malignancies. Cancer J. 2010;16:163–75.PubMedCrossRefGoogle Scholar
  134. 134.
    Memon K, Lewandowski RJ, Mulcahy MF, et al. Radioembolization for neuroendocrine liver metastases: safety, imaging, and long-term outcomes. Int J Radiat Oncol Biol Phys. 2012;83:887–94.PubMedGoogle Scholar
  135. 135.
    Vyleta M, Coldwell D. Radioembolization in the treatment of neuroendocrine tumor metastases to the liver. Int J Hepatol. 2011;2011:785315.PubMedGoogle Scholar
  136. 136.
    Kennedy A, Coldwell D, Sangro B, Wasan H, Salem R. Integrating radioembolization into the treatment paradigm for metastatic neuroendocrine tumors in the liver. Am J Clin Oncol. 2012;35:293–301.PubMedCrossRefGoogle Scholar
  137. 137.
    Paprottka PM, Hoffmann RT, Haug A, et al. Radioembolization of symptomatic, unresectable neuroendocrine hepatic metastases using yttrium-90 microspheres. Cardiovasc Intervent Radiol. 2012;35:334–42.PubMedCrossRefGoogle Scholar
  138. 138.
    Lacin S, Oz I, Ozkan E, Kucuk O, Bilgic S. Intra-arterial treatment with 90yttrium microspheres in treatment-refractory and unresectable liver metastases of neuroendocrine tumors and the use of 111in-octreotide scintigraphy in the evaluation of treatment response. Cancer Biother Radiopharm. 2011;26:631–7.Google Scholar
  139. 139.
    Shaheen M, Hassanain M, Aljiffry M, et al. Predictors of response to radio-embolization (TheraSphere(R)) treatment of neuroendocrine liver metastasis. HPB (Oxford). 2012;14:60–6.CrossRefGoogle Scholar
  140. 140.
    King J, Quinn R, Glenn DM, et al. Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. Cancer. 2008;113:921–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Whitney R, Valek V, Fages JF, et al. Transarterial chemoembolization and selective internal radiation for the treatment of patients with metastatic neuroendocrine tumors: a comparison of efficacy and cost. Oncologist. 2011;16:594–601.PubMedCrossRefGoogle Scholar
  142. 142.
    Kennedy AS, Dezarn WA, McNeillie P, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol. 2008;31:271–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Saxena A, Chua TC, Bester L, Kokandi A, Morris DL. Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases. Ann Surg. 2010;251:910–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Rhee TK, Lewandowski RJ, Liu DM, et al. 90Y Radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience. Ann Surg. 2008;247:1029–35.PubMedCrossRefGoogle Scholar
  145. 145.
    Lee E, Leon Pachter H, Sarpel U. Hepatic arterial embolization for the treatment of metastatic neuroendocrine tumors. Int. J Hepatol. 2012;2012:471203.PubMedGoogle Scholar
  146. 146.
    Riccardi F, Rizzo M, Festino L, et al. Therapy innovation for the treatment of pancreatic neuroendocrine tumors. Expert Opin Ther Targets. 2012;16 Suppl 2:S91–102.PubMedCrossRefGoogle Scholar
  147. 147.
    Eriksson B, Annibale B, Bajetta E, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: chemotherapy in patients with neuroendocrine tumors. Neuroendocrinology. 2009;90:214–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Maire F, Hammel P, Kianmanesh R, et al. Is adjuvant therapy with streptozotocin and 5-fluorouracil useful after resection of liver metastases from digestive endocrine tumors? Surgery. 2009;145:69–75.PubMedCrossRefGoogle Scholar
  149. 149.
    Hoffmann KM, Gibril F, Entsuah LK, Serrano J, Jensen RT. Patients with multiple endocrine neoplasia type 1 with gastrinomas have an increased risk of severe esophageal disease including stricture and the premalignant condition, Barrett’s esophagus. J Clin Endocrinol Metab. 2006;91:204–12.PubMedCrossRefGoogle Scholar
  150. 150.
    Kouvaraki MA, Ajani JA, Hoff P, et al. Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J Clin Oncol. 2004;22:4762–71.PubMedCrossRefGoogle Scholar
  151. 151.
    Strosberg JR, Fine RL, Choi J, et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer. 2011;117:268–75.PubMedCrossRefGoogle Scholar
  152. 152.
    Maire F, Hammel P, Faivre S, et al. Temozolomide: a safe and effective treatment for malignant digestive endocrine tumors. Neuroendocrinology. 2009;90:67–72.PubMedCrossRefGoogle Scholar
  153. 153.
    Ekeblad S, Sundin A, Janson ET, et al. Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin Cancer Res. 2007;13:2986–91.PubMedCrossRefGoogle Scholar
  154. 154.
    Kulke MH, Hornick JL, Frauenhoffer C, et al. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res. 2009;15:338–45.PubMedCrossRefGoogle Scholar
  155. 155.
    Sideris L, Dube P, Rinke A. Antitumor effects of somatostatin analogs in neuroendocrine tumors. Oncologist. 2012;17:747–55.PubMedCrossRefGoogle Scholar
  156. 156.
    Appetecchia M, Baldelli R. Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine tumours, current aspects and new perspectives. J Exp Clin Cancer Res. 2010;29:19–31.PubMedCrossRefGoogle Scholar
  157. 157.
    Plockinger U, Wiedenmann B. Biotherapy. Best Pract Res Clin Endocrinol Metab. 2007;21:145–62.PubMedCrossRefGoogle Scholar
  158. 158.
    Strosberg J, Kvols L. Antiproliferative effect of somatostatin analogs in gastroenteropancreatic neuroendocrine tumors. World J Gastroenterol. 2010;16:2963–70.PubMedCrossRefGoogle Scholar
  159. 159.
    Panzuto F, Di Francesco V, Iannicelli E, et al. Long-term clinical outcome of somatostatin analogues for treatment of progressive, metastatic, well-differentiated entero-pancreatic endocrine carcinoma. Ann Oncol. 2006;17:461–6.PubMedCrossRefGoogle Scholar
  160. 160.
    Rinke A, Muller HH, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27:4656–63.PubMedCrossRefGoogle Scholar
  161. 161.
    Blumberg J, Liyanage N, Caplin M, UK and Ireland NET/ENET Society. The Clarinet study-assessing the effect of Lanreotide Autogel on tumor progression-free survival in patients with non-functioning gastroenteropancreatic neuroendocrine tumors (GEP-NETs). NANETS-2011-Neuroendocrine Tumor Symposium (abstr C4).Google Scholar
  162. 162.
    Oberg K, Eriksson B. Endocrine tumours of the pancreas. Best Pract Res Clin Gastroenterol. 2005;19:753–81.PubMedCrossRefGoogle Scholar
  163. 163.
    Butturini G, Bettini R, Missiaglia E, et al. Predictive factors of efficacy of the somatostatin analogue octreotide as first line therapy for advanced pancreatic endocrine carcinoma. Endocr Relat Cancer. 2006;13:1213–21.PubMedCrossRefGoogle Scholar
  164. 164.
    Yamaguchi M, Yamada Y, Hosokawa Y, et al. Long-term suppressive effect of octreotide on progression of metastatic gastrinoma with multiple endocrine neoplasia type 1: seven-year follow up. Intern Med. 2010;49:1557–63.PubMedCrossRefGoogle Scholar
  165. 165.
    Granberg D, Jacobsson H, Oberg K, Gustavsson J, Lehtihet M. Regression of a large malignant gastrinoma on treatment with Sandostatin LAR: a case report. Digestion. 2008;77:92–5.PubMedCrossRefGoogle Scholar
  166. 166.
    Guillermet-Guibert J, Lahlou H, Pyronnet S, Bousquet C, Susini C. Somatostatin receptors as tools for diagnosis and therapy: Molecular aspects. Best Pract Res Clin Gastroenterol. 2005;19:535–51.PubMedCrossRefGoogle Scholar
  167. 167.
    Oberg K, Ferone D, Kaltsas G, Knigge UP, Taal B, Plockinger U. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: biotherapy. Neuroendocrinology. 2009;90:209–13.PubMedCrossRefGoogle Scholar
  168. 168.
    The NCCN clinical practice guidelines in oncology for neuroendocrine tumors version 1.2012. Version1.2012. 2012. online. go to www.nccn.org. Ref Type: Computer ProgramGoogle Scholar
  169. 169.
    Miljkovic MD, Girotra M, Abraham RR, Erlich RB. Novel medical therapies of recurrent and metastatic gastroenteropancreatic neuroendocrine tumors. Dig Dis Sci. 2012;57:9–18.PubMedCrossRefGoogle Scholar
  170. 170.
    Yao JC. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract Res Clin Endocrinol Metab. 2007;21:163–72.PubMedCrossRefGoogle Scholar
  171. 171.
    Phan AT. Metastatic pancreatic neuroendocrine tumors (pNET): placing current findings into perspective. Cancer Treat Rev. 2012 [Epub ahead of print].Google Scholar
  172. 172.
    Capurso G, Fazio N, Festa S, Panzuto F, de Braud F, Delle Fave G. Molecular target therapy for gastroenteropancreatic endocrine tumours: biological rationale and clinical perspectives. Crit Rev Oncol Hematol. 2009;72:110–24.PubMedCrossRefGoogle Scholar
  173. 173.
    Fazio N, Cinieri S, Lorizzo K, et al. Biological targeted therapies in patients with advanced enteropancreatic neuroendocrine carcinomas. Cancer Treat Rev. 2010;36 Suppl 3:S87–94.PubMedCrossRefGoogle Scholar
  174. 174.
    Missiaglia E, Dalai I, Barbi S, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 2010;28:245–55.PubMedCrossRefGoogle Scholar
  175. 175.
    Varas M, Gornals J, Ponseti JM, et al. Pancreatic endocrine tumors or apudomas. Rev Esp Enferm Dig. 2011;103:184–90.PubMedCrossRefGoogle Scholar
  176. 176.
    Yao JC, Phan AT, Chang DZ, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. 2008;26:4311–8.PubMedCrossRefGoogle Scholar
  177. 177.
    Ito T, Okusaka T, Ikeda M et al. Everolimus versus placebo in Japanese patients with advanced pancreatic neuroendocrine tumors (pNETs); Japanese subgroup analysis of RADIANT-3. J. Clin. Oncol. 2011;29:289 (abstr).Google Scholar
  178. 178.
    Raymond E, Hobday T, Castellano D, Reidy-Lagunes D, Garcia-Carbonero R, Carrato A. Therapy innovations: tyrosine kinase inhibitors for the treatment of pancreatic neuroendocrine tumors. Cancer Metastasis Rev. 2011;30 Suppl 1:19–26.PubMedCrossRefGoogle Scholar
  179. 179.
    Faivre S, Sablin MP, Dreyer C, Raymond E. Novel anticancer agents in clinical trials for well-differentiated neuroendocrine tumors. Endocrinol Metab Clin North Am. 2010;39:811–26.PubMedCrossRefGoogle Scholar
  180. 180.
    Furukawa M, Raffeld M, Mateo C, et al. Increased expression of insulin-like growth factor I (IGF-1) and/or its receptor (IGF-1R) in gastrinomas is associated with low curability, increased growth and development of metastases. Cancer Res. 2005;11:3233–42.CrossRefGoogle Scholar
  181. 181.
    Peghini PL, Iwamoto M, Raffeld M, et al. Overexpression of epidermal growth factor and hepatocyte growth factor receptors in a proportion of gastrinomas correlates with aggressive growth and lower curability. Clin Cancer Res. 2002;8:2273–85.PubMedGoogle Scholar
  182. 182.
    Pavel ME, Wiedenmann B. Novel therapeutic agents for the treatment of gastroenteropancreatic neuroendocrine tumors. Horm Metab Res. 2011;43:844–53.PubMedCrossRefGoogle Scholar
  183. 183.
    Capdevila J, Salazar R. Molecular targeted therapies in the treatment of gastroenteropancreatic neuroendocrine tumors. Target Oncol. 2009;4:287–96.PubMedCrossRefGoogle Scholar
  184. 184.
    Fjallskog ML, Lejonklou MH, Oberg KE, Eriksson BK, Janson ET. Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin Cancer Res. 2003;9:1469–73.PubMedGoogle Scholar
  185. 185.
    Kulke MH, Lenz HJ, Meropol NJ, et al. Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol. 2008;26:3403–10.PubMedCrossRefGoogle Scholar
  186. 186.
    Okusaka T, Ito T, Nishida T, et al. Phase 11 study of sunitinib (SU) in Japanese patients with unresectable or metastatic, well-differentiated pancreatic neuroendocrine tumors (NET). J. Clin. Oncol. 2012;30:381 (abstr).Google Scholar
  187. 187.
    Virgolini I, Traub T, Novotny C, et al. Experience with indium-111 and yttrium-90-labeled somatostatin analogs. Curr Pharm Des. 2002;8:1781–807.PubMedCrossRefGoogle Scholar
  188. 188.
    Oberg K. Somatostatin analog octreotide LAR in gastro-entero-pancreatic tumors. Expert Rev Anticancer Ther. 2009;9:557–66.PubMedCrossRefGoogle Scholar
  189. 189.
    Van Essen M, Krenning EP, Kam BL, de Jong M, Valkema R, Kwekkeboom DJ. Peptide-receptor radionuclide therapy for endocrine tumors. Nat Rev Endocrinol. 2009;5:382–93.PubMedCrossRefGoogle Scholar
  190. 190.
    Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.PubMedCrossRefGoogle Scholar
  191. 191.
    Kwekkeboom DJ, Teunissen JJ, Bakker WH, et al. Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005;23:2754–62.PubMedCrossRefGoogle Scholar
  192. 192.
    Forrer F, Valkema R, Kwekkeboom DJ, de Jong M, Krenning EP. Neuroendocrine tumors. Peptide receptor radionuclide therapy. Best Pract Res Clin Endocrinol Metab. 2007;21:111–29.PubMedCrossRefGoogle Scholar
  193. 193.
    Kwekkeboom DJ, de Herder WW, Krenning EP. Somatostatin receptor-targeted radionuclide therapy in patients with gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am. 2011;40:173–85.PubMedCrossRefGoogle Scholar
  194. 194.
    Oberg KE, Reubi JC, Kwekkeboom DJ, Krenning EP. Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. Gastroenterology. 2010;139:742–53.PubMedCrossRefGoogle Scholar
  195. 195.
    Dong M, Phan AT, Yao JC. New strategies for advanced neuroendocrine tumors in the era of targeted therapy. Clin Cancer Res. 2012;18:1830–6.PubMedCrossRefGoogle Scholar
  196. 196.
    Duran I, Kortmansky J, Singh D, et al. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer. 2006;95:1148–54.PubMedCrossRefGoogle Scholar
  197. 197.
    Yao JC, Phan A, Hoff PM, et al. Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol. 2008;26:1316–23.PubMedCrossRefGoogle Scholar
  198. 198.
    Chan JA, Kulke MH. New treatment options for patients with advanced neuroendocrine tumors. Curr Treat Options Oncol. 2011;12:136–48.PubMedCrossRefGoogle Scholar
  199. 199.
    Kulke MH, Siu LL, Tepper JE, et al. Future directions in the treatment of neuroendocrine tumors: consensus report of the national cancer institute neuroendocrine tumor clinical trials planning meeting. J Clin Oncol. 2011;29:934–43.PubMedCrossRefGoogle Scholar
  200. 200.
    Kulke MH, Stuart K, Enzinger PC, et al. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol. 2006;24:401–6.PubMedCrossRefGoogle Scholar
  201. 201.
    Raut CP, Kulke MH. Targeted therapy in advanced well-differentiated neuroendocrine tumors. Oncologist. 2011;16:286–95.PubMedCrossRefGoogle Scholar
  202. 202.
    Eriksson B. New drugs in neuroendocrine tumors: rising of new therapeutic philosophies? Curr Opin Oncol. 2010;22:381–6.PubMedCrossRefGoogle Scholar
  203. 203.
    Schmid HA, Schoeffter P. Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinology. 2004;80 Suppl 1:47–50.PubMedCrossRefGoogle Scholar
  204. 204.
    Schmitt AM, Anlauf M, Rousson V, et al. WHO 2004 criteria and CK19 are reliable prognostic markers in pancreatic endocrine tumors. Am J Surg Pathol. 2007;31:1677–82.PubMedCrossRefGoogle Scholar
  205. 205.
    Ruf J, Schiefer J, Furth C, et al. 68Ga-DOTATOC PET/CT of neuroendocrine tumors: spotlight on the CT phases of a triple-phase protocol. J Nucl Med. 2011;52:697–704.PubMedCrossRefGoogle Scholar
  206. 206.
    Hainsworth JD, Spigel DR, Litchy S, Greco FA. Phase II trial of paclitaxel, carboplatin, and etoposide in advanced poorly differentiated neuroendocrine carcinoma: a Minnie Pearl Cancer Research Network Study. J Clin Oncol. 2006;24:3548–54.PubMedCrossRefGoogle Scholar
  207. 207.
    Olsen IH, Langer SW, Jepsen I, et al. First-line treatment of patients with disseminated poorly differentiated neuroendocrine carcinomas with carboplatin, etoposide, and vincristine: a single institution experience. Acta Oncol. 2012;51:97–100.PubMedCrossRefGoogle Scholar
  208. 208.
    Clancy TE, Sengupta TP, Paulus J, Ahmed F, Duh MS, Kulke MH. Alkaline phosphatase predicts survival in patients with metastatic neuroendocrine tumors. Dig Dis Sci. 2006;51:877–84.PubMedCrossRefGoogle Scholar
  209. 209.
    Lo CY, Van Heerden JA, Thompson GB, Grant CS, Soreide JA, Harmsen WS. Islet cell carcinoma of the pancreas. World J Surg. 1996;20:878–84.PubMedCrossRefGoogle Scholar
  210. 210.
    Janson ET, Holmberg L, Stridsberg M, et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann Oncol. 1997;8:685–90.PubMedCrossRefGoogle Scholar
  211. 211.
    Madeira I, Terris B, Voss M, et al. Prognostic factors in patients with endocrine tumours of the duodenopancreatic area. Gut. 1998;43:422–7.PubMedCrossRefGoogle Scholar
  212. 212.
    Maton PN, Gardner JD, Jensen RT. Cushing’s syndrome in patients with Zollinger-Ellison syndrome. N Engl J Med. 1986;315:1–5.PubMedCrossRefGoogle Scholar
  213. 213.
    Arnold R, Wilke A, Rinke A, et al. Plasma chromogranin a as marker for survival in patients with metastatic endocrine gastroenteropancreatic tumors. Clin Gastroenterol Hepatol. 2008;6:820–7.PubMedCrossRefGoogle Scholar
  214. 214.
    Arnold R, Rinke A, Klose KJ, et al. Octreotide versus octreotide plus interferon-alpha in endocrine gastroenteropancreatic tumors: a randomized trial. Clin Gastroenterol Hepatol. 2005;3:761–71.PubMedCrossRefGoogle Scholar
  215. 215.
    Strosberg J, Gardner N, Kvols L. Survival and prognostic factor analysis of 146 metastatic neuroendocrine tumors of the mid-gut. Neuroendocrinology. 2009;89:471–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer (outside the USA) 2012

Authors and Affiliations

  • Tetsuhide Ito
    • 1
  • Hisato Igarashi
    • 1
  • Robert T. Jensen
    • 2
  1. 1.Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Digestive Diseases BranchNIDDK, NIHBethesdaUSA

Personalised recommendations