Journal of Gastroenterology

, Volume 48, Issue 1, pp 125–131 | Cite as

IL-23R polymorphisms, HBV infection, and risk of hepatocellular carcinoma in a high-risk Chinese population

  • Yan Xu
  • Yao Liu
  • Shandong Pan
  • Li Liu
  • Jibin Liu
  • Xiangjun Zhai
  • Hongbing Shen
  • Zhibin HuEmail author
Original Article—Liver, Pancreas, and Biliary Tract



The interleukin-23 receptor (IL-23R) plays an important role in the T-helper 17 cell-mediated inflammatory process and is also involved in tumor immune surveillance, which may be linked to carcinogenesis in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). In this study, we hypothesized that potentially functional genetic variants of the IL-23R gene may modify HCC risk.


We genotyped two single-nucleotide polymorphisms (SNPs) of IL-23R, rs6682925 and rs1884444, in a case–control study of 837 HCC cases, 899 HBV surface antigen (HBsAg)-positive controls, and 743 HBsAg-negative controls. A reporter gene assay was performed to evaluate the functional relevance of the rs6682925 SNP located at the promoter region of the IL-23R gene.


We found that the two SNPs were associated with the risk of HCC when compared with both the HBsAg-positive and -negative controls. When compared with all controls, IL-23R rs6682925 and rs1884444 both increased the HCC risk in a recessive genetic model [rs6682925 CC vs. TT/TC: odds ratio (OR) 1.35, 95 % confidence interval (CI) 1.07–1.70; rs1884444 GG vs. TT/TG: OR 1.36, 95 % CI 1.05–1.77]. Furthermore, the variant C allele of rs6682925 in the promoter region of IL-23R was associated with increased reporter gene activity.


These findings indicate that genetic variants in IL-23R may contribute to HCC development.


Interleukin-23 receptor Polymorphism Hepatocellular carcinoma HBV Reporter gene 



This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 30800946, 81072344), a Grant from the Health Bureau of Jiangsu Province I, Jiangsu 333 program (Grant No. DG216D5023), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, Foundation for the Author of National Excellent Doctoral Dissertation (Grant No. 201081).

Conflict of interest

None declared.

Supplementary material

535_2012_620_MOESM1_ESM.doc (56 kb)
Supplementary Tables 1–3 (DOC 55 kb)


  1. 1.
    Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB. Cancer incidence in five continents. Vol. VIII. IARC Scientific Publications No. 155, Lyon, IARC. 2002. p.1–781.Google Scholar
  2. 2.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhu ZZ, Cong WM. Roles of hepatitis B virus and hepatitis C virus in hepato-carcinogenesis. Zhonghua Gan Zang Bing Za Zhi. 2003;11:574–6.PubMedGoogle Scholar
  4. 4.
    Kuper H, Tzonou A, Kaklamani E, Hsieh CC, Lagiou P, Adami HO, et al. Tobacco smoking, alcohol consumption and their interaction in the causation of hepatocellular carcinoma. Int J Cancer. 2000;85:498–502.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen CJ, Wang LY, Lu SN, Wu MH, You SL, Zhang YJ, et al. Elevated aflatoxin exposure and increased risk of hepatocellular carcinoma. Hepatology. 1996;24:38–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Yang HI, Lu SN, Liaw YF, You SL, Sun CA, Wang LY, et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med. 2002;347:168–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, et al. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13:4677–85.PubMedCrossRefGoogle Scholar
  8. 8.
    Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, et al. IL-23 promotes tumour incidence and growth. Nature. 2006;442:461–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu L, Xu Y, Liu Z, Chen J, Zhang Y, Zhu J, et al. IL12 polymorphisms, HBV infection and risk of hepatocellular carcinoma in a high-risk Chinese population. Int J Cancer. 2011;128:1692–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13:715–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.PubMedCrossRefGoogle Scholar
  13. 13.
    McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168:5699–708.PubMedGoogle Scholar
  15. 15.
    Yamashita YI, Shimada M, Hasegawa H, Minagawa R, Rikimaru T, Hamatsu T, et al. Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res. 2001;61:1005–12.PubMedGoogle Scholar
  16. 16.
    Barajas M, Mazzolini G, Genove G, Bilbao R, Narvaiza I, Schmitz V, et al. Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepatology. 2001;33:52–61.PubMedCrossRefGoogle Scholar
  17. 17.
    Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27:147–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43:S54–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80:273–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007;39:830–2.PubMedCrossRefGoogle Scholar
  22. 22.
    Van Limbergen J, Russell RK, Nimmo ER, Drummond HE, Smith L, Davies G, et al. IL23R Arg381Gln is associated with childhood onset inflammatory bowel disease in Scotland. Gut. 2007;56:1173–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Huffmeier U, Lascorz J, Bohm B, Lohmann J, Wendler J, Mossner R, et al. Genetic variants of the IL-23R pathway: association with psoriatic arthritis and psoriasis vulgaris, but no specific risk factor for arthritis. J Invest Dermatol. 2009;129:355–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Hu L, Liu J, Chen X, Zhang Y, Liu L, Zhu J, et al. CTLA-4 gene polymorphism +49 A/G contributes to genetic susceptibility to two infection-related cancers–hepatocellular carcinoma and cervical cancer. Hum Immunol. 2010;71:888–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, et al. Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res. 1998;26:362–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Bossard P, Zaret KS. GATA transcription factors as potentiators of gut endoderm differentiation. Development. 1998;125:4909–17.PubMedGoogle Scholar
  27. 27.
    Chou J, Provot S, Werb Z. GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol. 2010;222:42–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Kan SH, Mancini G, Gallagher G. Identification and characterization of multiple splice forms of the human interleukin-23 receptor alpha chain in mitogen-activated leukocytes. Genes Immun. 2008;9:631–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Conde L, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J, Rousseau F, et al. PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res. 2006;34:W621–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen J, Lu Y, Zhang H, Ding Y, Ren C, Hua Z, et al. A nonsynonymous polymorphism in IL23R gene is associated with risk of gastric cancer in a Chinese population. Mol Carcinog. 2010;49:862–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Chu H, Cao W, Chen W, Pan S, Xiao Y, Liu Y, et al. Potentially functional polymorphisms in IL-23R and risk of esophageal cancer in a Chinese population. Int J Cancer. 2012;130(5):1093–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Rossol S, Marinos G, Carucci P, Singer MV, Williams R, Naoumov NV. Interleukin-12 induction of Th1 cytokines is important for viral clearance in chronic hepatitis B. J Clin Invest. 1997;99:3025–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Arima S, Akbar SM, Michitaka K, Horiike N, Nuriya H, Kohara M, et al. Impaired function of antigen-presenting dendritic cells in patients with chronic hepatitis B: localization of HBV DNA and HBV RNA in blood DC by in situ hybridization. Int J Mol Med. 2003;11:169–74.PubMedGoogle Scholar
  34. 34.
    Cavanaugh VJ, Guidotti LG, Chisari FV. Interleukin-12 inhibits hepatitis B virus replication in transgenic mice. J Virol. 1997;71:3236–43.PubMedGoogle Scholar
  35. 35.
    Lo CH, Lee SC, Wu PY, Pan WY, Su J, Cheng CW, et al. Antitumor and antimetastatic activity of IL-23. J Immunol. 2003;171:600–7.PubMedGoogle Scholar
  36. 36.
    Wang YQ, Ugai S, Shimozato O, Yu L, Kawamura K, Yamamoto H, et al. Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer. 2003;105:820–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Ljujic B, Radosavljevic G, Jovanovic I, Pavlovic S, Zdravkovic N, Milovanovic M, et al. Elevated serum level of IL-23 correlates with expression of VEGF in human colorectal carcinoma. Arch Med Res. 2010;41:182–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang B, Rong G, Wei H, Zhang M, Bi J, Ma L, et al. The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun. 2008;374:533–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • Yan Xu
    • 1
  • Yao Liu
    • 1
  • Shandong Pan
    • 1
  • Li Liu
    • 2
  • Jibin Liu
    • 2
  • Xiangjun Zhai
    • 3
  • Hongbing Shen
    • 1
    • 4
  • Zhibin Hu
    • 1
    • 4
    Email author
  1. 1.Department of Epidemiology and Biostatistics, MOE Key Laboratory of Modern Toxicology, State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
  2. 2.Department of Hepatobiliary SurgeryNantong Tumor HospitalNantongChina
  3. 3.Department of Infection DiseasesJiangsu Province Center for Disease Prevention and ControlNanjingChina
  4. 4.Section of Clinical Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer CenterNanjing Medical UniversityNanjingChina

Personalised recommendations