Journal of Gastroenterology

, Volume 47, Issue 4, pp 404–411 | Cite as

Endogenous orexin-A in the brain mediates 2-deoxy-d-glucose-induced stimulation of gastric motility in freely moving conscious rats

  • Tsukasa Nozu
  • Yoshihiro Tuchiya
  • Shima Kumei
  • Kaoru Takakusaki
  • Koji Ataka
  • Mineko Fujimiya
  • Toshikatsu Okumura
Original Article—Alimentary Tract



Increasing evidence has indicated that brain orexin plays a vital role in the regulation of gastrointestinal (GI) physiology such as gastric acid secretion and GI motility. The aim of this study was to elucidate the effects and mechanisms of orexin on gastric motility in non-fasted rats.


In this study, we recorded intraluminal gastric pressure waves in freely moving conscious rats with a manometric catheter located in the antrum. We assessed the area under the manometric trace as the motor index (MI), and compared its values for 1 h before and after drug administration.


Intracisternal (ic) injection of orexin-A (10 μg) significantly increased the MI, but intraperitoneal (ip) injection did not have any effect. Pretreatment of ip injection of atropine significantly blocked the orexin-A-induced stimulation of gastric motility. Intravenous injection of 2-deoxy-d-glucose (2-DG, 200 mg/kg), a central vagal stimulant, significantly increased the MI. The ic injection of SB-334687 (40 μg), a selective orexin-A antagonist, did not modify the basal MI, but this antagonist significantly suppressed the stimulant action of 2-DG.


These results suggest that endogenous orexin-A in the brain is involved in the vagal-dependent stimulation of gastric contractions.


Orexin Brain Stomach Motility Intraluminal pressure wave 



This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan [C-23590252 (TN), and C-22590753 (TO)].

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95:322–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92:573–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Yamada H, Okumura T, Motomura W, Kobayashi Y, Kohgo Y. Inhibition of food intake by central injection of anti-orexin antibody in fasted rats. Biochem Biophys Res Commun. 2000;267:527–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Ida T, Nakahara K, Katayama T, Murakami N, Nakazato M. Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain Res. 1999;821:526–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Suzuki M, Beuckmann CT, Shikata K, Ogura H, Sawai T. Orexin-A (hypocretin-1) is possibly involved in generation of anxiety-like behavior. Brain Res. 2005;1044:116–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Lubkin M, Stricker-Krongrad A. Independent feeding and metabolic actions of orexins in mice. Biochem Biophys Res Commun. 1998;253:241–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Kuru M, Ueta Y, Serino R, Nakazato M, Yamamoto Y, Shibuya I, et al. Centrally administered orexin/hypocretin activates HPA axis in rats. Neuroreport. 2000;11:1977–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kannan H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol Regul Integr Comp Physiol. 1999;277:R1780–5.Google Scholar
  10. 10.
    Okumura T, Takeuchi S, Motomura W, Yamada H, Egashira Si S, Asahi S, et al. Requirement of intact disulfide bonds in orexin-A-induced stimulation of gastric acid secretion that is mediated by OX1 receptor activation. Biochem Biophys Res Commun. 2001;280:976–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Takahashi N, Okumura T, Yamada H, Kohgo Y. Stimulation of gastric acid secretion by centrally administered orexin-A in conscious rats. Biochem Biophys Res Commun. 1999;254:623–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Yamada H, Takahashi N, Tanno S, Nagamine M, Takakusaki K, Okumura T. A selective orexin-1 receptor antagonist, SB334867, blocks 2-DG-induced gastric acid secretion in rats. Neurosci Lett. 2005;376:137–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Bülbül M, Babygirija R, Ludwig K, Takahashi T. Central orexin-A increases gastric motility in rats. Peptides. 2010;31:2118–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Kobashi M, Furudono Y, Matsuo R, Yamamoto T. Central orexin facilitates gastric relaxation and contractility in rats. Neurosci Lett. 2002;332:171–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Bülbül M, Tan R, Gemici B, Ozdem S, Ustunel I, Acar N, et al. Endogenous orexin-A modulates gastric motility by peripheral mechanisms in rats. Peptides. 2010;31:1099–108.PubMedCrossRefGoogle Scholar
  16. 16.
    Ataka K, Inui A, Asakawa A, Kato I, Fujimiya M. Obestatin inhibits motor activity in the antrum and duodenum in the fed state of conscious rats. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1210–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Okumura T, Fukagawa K, Tso P, Taylor IL, Pappas TN. Intracisternal injection of apolipoprotein A-IV inhibits gastric secretion in pylorus-ligated conscious rats. Gastroenterology. 1994;107:1861–4.PubMedGoogle Scholar
  18. 18.
    Bülbül M, Babygirija R, Zheng J, Ludwig KA, Takahashi T. Central orexin-A changes the gastrointestinal motor pattern from interdigestive to postprandial in rats. Auton Neurosci. 2010;158:24–30.PubMedCrossRefGoogle Scholar
  19. 19.
    Ehrström M, Näslund E, Ma J, Kirchgessner AL, Hellström PM. Physiological regulation and NO-dependent inhibition of migrating myoelectric complex in the rat small bowel by OXA. Am J Physiol Gastrointest Liver Physiol. 2003;285:G688–95.PubMedGoogle Scholar
  20. 20.
    Näslund E, Ehrström M, Ma J, Hellström PM, Kirchgessner AL. Localization and effects of orexin on fasting motility in the rat duodenum. Am J Physiol Gastrointest Liver Physiol. 2002;282:G470–9.PubMedGoogle Scholar
  21. 21.
    Korczynski W, Ceregrzyn M, Matyjek R, Kato I, Kuwahara A, Wolinski J, et al. Central and local (enteric) action of orexins. J Physiol Pharmacol. 2006;57(Suppl 6):17–42.PubMedGoogle Scholar
  22. 22.
    Nozu T, Kumei S, Takakusaki K, Ataka K, Fujimiya M, Okumura T. Central orexin-A increases colonic motility in conscious rats. Neurosci Lett. 2011;498:143–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Colin-Jones DG, Himsworth RL. The location of the chemoreceptor controlling gastric acid secretion during hypoglycaemia. J Physiol. 1970;206:397–409.PubMedGoogle Scholar
  24. 24.
    Duke WW, Hirschowitz BI, Sachs G. Vagal stimulation of gastric secretion in man by 2-deoxy-d-glucose. Lancet. 1965;2:871–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Okumura T, Namiki M. Vagal motor neurons innervating the stomach are site-specifically organized in the dorsal motor nucleus of the vagus nerve in rats. J Auton Nerv Syst. 1990;29:157–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA. 1999;96:748–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Grabauskas G, Moises HC. Gastrointestinal-projecting neurones in the dorsal motor nucleus of the vagus exhibit direct and viscerotopically organized sensitivity to orexin. J Physiol. 2003;549:37–56.PubMedCrossRefGoogle Scholar
  28. 28.
    Hwang LL, Chen CT, Dun NJ. Mechanisms of orexin-induced depolarizations in rat dorsal motor nucleus of vagus neurones in vitro. J Physiol. 2001;537:511–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Krowicki ZK, Burmeister MA, Berthoud HR, Scullion RT, Fuchs K, Hornby PJ. Orexins in rat dorsal motor nucleus of the vagus potently stimulate gastric motor function. Am J Physiol Gastrointest Liver Physiol. 2002;283:G465–72.PubMedGoogle Scholar
  30. 30.
    Taché Y. Central nervous system regulation of gastric acid secretion. In: Johnson LR, editor. Physiology of the gastrointestinal tract. vol. 2. New York: Raven Press; 1988. p. 911–30.Google Scholar
  31. 31.
    Quintana E, Garcia-Zaragoza E, Martinez-Cuesta MA, Calatayud S, Esplugues JV, Barrachina MD. A cerebral nitrergic pathway modulates endotoxin-induced changes in gastric motility. Br J Pharmacol. 2001;134:325–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Harrison TA, Chen CT, Dun NJ, Chang JK. Hypothalamic orexin A-immunoreactive neurons project to the rat dorsal medulla. Neurosci Lett. 1999;273:17–20.PubMedCrossRefGoogle Scholar
  33. 33.
    Briski KP, Sylvester PW. Hypothalamic orexin-A-immunpositive neurons express Fos in response to central glucopenia. Neuroreport. 2001;12:531–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Smart D, Sabido-David C, Brough SJ, Jewitt F, Johns A, Porter RA, et al. SB-334867-A: the first selective orexin-1 receptor antagonist. Br J Pharmacol. 2001;132:1179–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Mönnikes H, et al. Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor2 receptor. Endocrinology. 2009;150:4911–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Miyasaka K, Masuda M, Kanai S, Sato N, Kurosawa M, Funakoshi A. Central orexin-A stimulates pancreatic exocrine secretion via the vagus. Pancreas. 2002;25:400–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Okumura T, Takakusaki K. Role of orexin in central regulation of gastrointestinal functions. J Gastroenterol. 2008;43:652–60.PubMedCrossRefGoogle Scholar
  38. 38.
    Manabe N, Nakamura K, Hara M, Imamura H, Kusunoki H, Tanaka S, et al. Impaired gastric response to modified sham feeding in patients with postprandial distress syndrome. Neurogastroenterol Motil. 2011;23:215–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Vanden Berghe P, Janssen P, Kindt S, Vos R, Tack J. Contribution of different triggers to the gastric accommodation reflex in humans. Am J Physiol Gastrointest Liver Physiol. 2009;297:G902–6.CrossRefGoogle Scholar
  40. 40.
    Brown J. Effects of 2-deoxyglucose on carbohydrate metabolism: review of the literature and studies in the rat. Metab Clin Exp. 1962;11:1098–112.PubMedGoogle Scholar
  41. 41.
    Ohno K, Sakurai T. Orexin neuronal circuitry: role in the regulation of sleep and wakefulness. Front Neuroendocrinol. 2008;29:70–87.PubMedCrossRefGoogle Scholar
  42. 42.
    Toshinai K, Date Y, Murakami N, Shimada M, Mondal MS, Shimbara T, et al. Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology. 2003;144:1506–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Fujimiya M, Ataka K, Asakawa A, Chen CY, Kato I, Inui A. Ghrelin, des-acyl ghrelin and obestatin on the gastrointestinal motility. Peptides. 2011;32:2348–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Drossman DA. The functional gastrointestinal disorders and the Rome III process. Gastroenterology. 2006;130:1377–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Okumura T, Nozu T. Role of brain orexin in the pathophysiology of functional gastrointestinal disorders. J Gastroenterol Hepatol. 2011;26(Suppl 3):61–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Greydanus MP, Vassallo M, Camilleri M, Nelson DK, Hanson RB, Thomforde GM. Neurohormonal factors in functional dyspepsia: insights on pathophysiological mechanisms. Gastroenterology. 1991;100:1311–8.PubMedGoogle Scholar
  47. 47.
    Tack J, Piessevaux H, Coulie B, Caenepeel P, Janssens J. Role of impaired gastric accommodation to a meal in functional dyspepsia. Gastroenterology. 1998;115:1346–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Tsukasa Nozu
    • 1
  • Yoshihiro Tuchiya
    • 2
  • Shima Kumei
    • 2
  • Kaoru Takakusaki
    • 3
  • Koji Ataka
    • 4
  • Mineko Fujimiya
    • 4
  • Toshikatsu Okumura
    • 2
  1. 1.Department of Regional Medicine and EducationAsahikawa Medical UniversityAsahikawaJapan
  2. 2.Department of General MedicineAsahikawa Medical UniversityAsahikawaJapan
  3. 3.Research Center for Brain Function and Medical EngineeringAsahikawa Medical UniversityAsahikawaJapan
  4. 4.Department of AnatomySapporo Medical University School of MedicineSapporoJapan

Personalised recommendations