Advertisement

Journal of Gastroenterology

, Volume 47, Issue 1, pp 9–20 | Cite as

Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography–mass spectrometry

  • Masaru Yoshida
  • Naoya Hatano
  • Shin Nishiumi
  • Yasuhiro Irino
  • Yoshihiro Izumi
  • Tadaomi Takenawa
  • Takeshi Azuma
Review

Abstract

Recently, metabolome analysis has been increasingly applied to biomarker detection and disease diagnosis in medical studies. Metabolome analysis is a strategy for studying the characteristics and interactions of low molecular weight metabolites under a specific set of conditions and is performed using mass spectrometry and nuclear magnetic resonance spectroscopy. There is a strong possibility that changes in metabolite levels reflect the functional status of a cell because alterations in their levels occur downstream of DNA, RNA, and protein. Therefore, the metabolite profile of a cell is more likely to represent the current status of a cell than DNA, RNA, or protein. Thus, owing to the rapid development of mass spectrometry analytical techniques metabolome analysis is becoming an important experimental method in life sciences including the medical field. Here, we describe metabolome analysis using liquid chromatography–mass spectrometry, gas chromatography–mass spectrometry (GC–MS), capillary electrophoresis–mass spectrometry, and matrix assisted laser desorption ionization–mass spectrometry. Then, the findings of studies about GC–MS-based metabolome analysis of gastroenterological diseases are summarized, and our research results are also introduced. Finally, we discuss the realization of disease diagnosis by metabolome analysis. The development of metabolome analysis using mass spectrometry will aid the discovery of novel biomarkers, hopefully leading to the early detection of various diseases.

Keywords

Metabolome GC–MS Diagnosis Cancer IBD 

Abbreviations

NMR

Nuclear magnetic resonance

GC–MS

Gas chromatography–mass spectrometry

LC–MS

Liquid chromatography–mass spectrometry

CE–MS

Capillary electrophoresis–mass spectrometry

MALDI–MS

Matrix assisted laser desorption ionization–mass spectrometry

HPLC

High-performance liquid chromatography

PCA

Principal component analysis

PLS–DA

Partial least squares–discriminant analysis

HMDB

Human metabolome database

TICC

Total ion current chromatogram

EI

Electron impact

AMDIS

Automated Mass Spectral Deconvolution and Identification System

HMT

Human Metabolome Technologies

TOF

Time-of-flight

Q

Quadrupole

IBD

Inflammatory bowel disease

HBV

Hepatitis B virus

DSS

Dextran sulfate sodium

TCA

Tricarboxylic acid

HUSERMET

Human serum metabolome

UC

Ulcerative colitis

CD

Crohn’s disease

SCID

Severe combined immunodeficiency disease

DEN

Diethylnitrosamine

IL10

Interleukin 10

Notes

Acknowledgments

This study was supported in part by grants for the Global COE Program “Global Center of Excellence for Education and Research on Signal Transduction Medicine in the Coming Generation” from MEXT (Ministry of Education, Culture, Sports, Science, and Technology of Japan) (M. Y., N. H., and T. A.) and for the Young Researchers Training Program for Promoting Innovation from MEXT through the Special Coordination Fund for Promoting Science and Technology (S. N. and T. A.). We thank Shimadzu Co. for their technical support and helpful discussion.

Conflict of interest

None.

References

  1. 1.
    Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16:373–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Nambiar PR, Gupta RR, Misra V. An “Omics” based survey of human colon cancer. Mutat Res. 2010;693:3–18.PubMedCrossRefGoogle Scholar
  3. 3.
    Rochfort S. Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. J Nat Prod. 2005;68:1813–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Lewen J, Jing C, Peiyuan Y, Xin L, Guowang X. Serum metabonomics study of chronic renal failure by ultra performance liquid chromatography coupled with Q-TOF mass spectrometry. Metabolomics. 2008;4:183–9.CrossRefGoogle Scholar
  5. 5.
    Chen C, Shah YM, Morimura K, Krausz KW, Miyazaki M, Richardson TA, et al. Metabolomics reveals that hepatic stearoyl-CoA desaturase 1 downregulation exacerbates inflammation and acute colitis. Cell Metab. 2008;7:135–47.PubMedCrossRefGoogle Scholar
  6. 6.
    Japan Science and Technology Agency. http://www.cellmetabo.jst.go.jp/ja/jobrequest.html. Accessed 25 Oct 2005.
  7. 7.
    Genome Alberta & Genome Canada. http://www.hmdb.ca/. Accessed 1 Jan 2006.
  8. 8.
  9. 9.
    MassBank Project. http://www.massbank.jp/. Accessed 2006.
  10. 10.
    Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–4.PubMedCrossRefGoogle Scholar
  11. 11.
    National Institute of Standards and Technology. http://chemdata.nist.gov/mass-spc/amdis. Accessed 2003.
  12. 12.
    Fukusaki E, Kobayashi A. Plant metabolomics: potential for practical operation. J Biosci Bioeng. 2005;100:347–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Pongsuwan W, Fukusaki E, Bamba T, Yonetani T, Yamahara T, Kobayashi A. Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J Agric Food Chem. 2007;55:231–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Pongsuwan W, Bamba T, Yonetani T, Kobayashi A, Fukusaki E. Quality prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting. J Agric Food Chem. 2008;56:744–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Pongsuwan W, Bamba T, Harada K, Yonetani T, Kobayashi A, Fukusaki E. High-throughput technique for comprehensive analysis of Japanese green tea quality assessment using ultra-performance liquid chromatography with time-of-flight mass spectrometry (UPLC/TOF MS). J Agric Food Chem. 2008;56:10705–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Tianniam S, Tarachiwin L, Bamba T, Kobayashi A, Fukusaki E. Metabolic profiling of Angelica acutiloba roots utilizing gas chromatography-time-of-flight-mass spectrometry for quality assessment based on cultivation area and cultivar via multivariate pattern recognition. J Biosci Bioeng. 2008;105:655–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Nishiumi S, Shinohara M, Ikeda A, Yoshie T, Hatano N, Kakuyama S, et al. Serum metabolomics as a novel diagnostic approach for pancreatic cancer. Metabolomics. 2010;6:518–28.CrossRefGoogle Scholar
  18. 18.
    Ikeda A, Nishiumi S, Shinohara M, Yoshie T, Hatano N, Okuno T, et al. Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed Chromatogr. In press.Google Scholar
  19. 19.
    Shiomi Y, Nishiumi S, Ooi M, Hatano N, Shinohara M, Yoshie T, et al. A GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium. Inflamm Bowel Dis. 2011;17:2261–74.Google Scholar
  20. 20.
    Ooi M, Nishiumi S, Yoshie T, Shiomi Y, Kohashi M, Fukunaga K, et al. GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis. Imflamm Res. 2011;60:31–840.Google Scholar
  21. 21.
    Monton MR, Soga T. Metabolome analysis by capillary electrophoresis-mass spectrometry. J Chromatogr A. 2007;1168:237–46.PubMedCrossRefGoogle Scholar
  22. 22.
    Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem. 2006;281:16768–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009;69:4918–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Setou M, Kurabe N. Mass microscopy: high-resolution imaging mass spectrometry. J Electron Microsc (Tokyo). 2011;60:47–56.CrossRefGoogle Scholar
  25. 25.
    Setou M, Shrivas K, Sroyraya M, Yang H, Sugiura Y, Moribe J, et al. Developments and applications of mass microscopy. Med Mol Morphol. 2010;43:1–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Fernández-Bañares F, Cabré E, González-Huix F, Gassull MA. Enteral nutrition as primary therapy in Crohn’s disease. Gut. 1994;35:55–9.CrossRefGoogle Scholar
  27. 27.
    Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Wu H, Xue R, Lu C, Deng C, Liu T, Zeng H, et al. Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:3111–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Wu H, Xue R, Tang Z, Deng C, Liu T, Zeng H, et al. Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal Bioanal Chem. 2010;396:1385–95.PubMedCrossRefGoogle Scholar
  30. 30.
    Qui Y, Cai G, Su M, Chen T, Liu Y, Xu Y, et al. Urinary metabolomic study on colorectal cancer. J Proteome Res. 2010;9:1627–34.CrossRefGoogle Scholar
  31. 31.
    Qui Y, Cai G, Su M, Chen T, Zeng X, Xu Y, et al. Serum metabolite profiling of human colorectal cancer using GC-TOF MS and UPLC-Q TOF MS. J Proteome Res. 2009;8:4844–50.CrossRefGoogle Scholar
  32. 32.
    Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, Kind T, et al. Metabolite profiling of colon carcinoma-deregulation of TCA cycle and amino acid turnover. Mol Cancer. 2008;7:72.Google Scholar
  33. 33.
    Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res. 2009;8:352–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Ma Y, Liu W, Peng J, Huang L, Zhang P, Zhao X, et al. A pilot study of gas chromatograph/mass spectrometry-based serum metabolic profiling of colorectal cancer after operation. Mol Biol Rep. 2010;37:1403–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Kondo Y, Nishiumi S, Shinohara M, Hatano N, Ikeda A, Yoshie T, et al. Serum fatty acid profiling of colorectal cancer by gas chromatography/mass spectrometry. Biomark Med. 2011;5:451–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Xue R, Lin Z, Deng C, Dong L, Liu T, Wang J, et al. A serum metabolomic investigation on hepatocellular carcinoma patients by chemical derivatization followed by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2008;22:3061–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Wu H, Xue R, Dong L, Liu T, Deng C, Zeng H, et al. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal Chim Acta. 2009;648:98–104.PubMedCrossRefGoogle Scholar
  38. 38.
    Urayama S, Zou W, Brooks K, Tolstikov V. Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer. Rapid Commun Mass Spectrom. 2010;24:613–20.PubMedCrossRefGoogle Scholar
  39. 39.
    Xue R, Dong L, Wu H, Liu T, Wang J, Shen X. Gas chromatography/mass spectrometry screening of serum metabolomic biomarkers in hepatitis B virus infected cirrhosis patients. Clin Chem Lab Med. 2009;47:305–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Hu JD, Tang HQ, Zhang Q, Fan J, Hong J, Gu JZ, et al. Prediction of gastric cancer metastasis through urinary metabolomic investigation using GC/MS. World J Gastroenterol. 2011;17:727–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Li ZF, Wang J, Huang C, Zhang S, Yang J, Jiang A, et al. Gas chromatography/time-of-flight mass spectrometry-based metabonomics of hepatocarcinoma in rats with lung metastasis: elucidation of the metabolic characteristics of hepatocarcinoma at formation and metastasis. Rapid Commun Mass Spectrom. 2010;24:2765–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Lin HM, Edmunds SJ, Helsby NA, Ferguson LR, Rowan DD. Nontargeted urinary metabolite profiling of a mouse model of Crohn’s disease. J Proteome Res. 2009;8:2045–57.PubMedCrossRefGoogle Scholar
  43. 43.
    Lin HM, Barnett MP, Roy NC, Joyce NI, Zhu S, Armstrong K, et al. Metabolomic analysis identifies inflammatory and noninflammatory metabolic effects of genetic modification in a mouse model of Crohn’s disease. J Proteome Res. 2010;9:1965–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Masaru Yoshida
    • 1
    • 2
    • 3
  • Naoya Hatano
    • 2
  • Shin Nishiumi
    • 1
  • Yasuhiro Irino
    • 2
  • Yoshihiro Izumi
    • 1
  • Tadaomi Takenawa
    • 2
    • 4
  • Takeshi Azuma
    • 1
  1. 1.Division of Gastroenterology, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
  2. 2.The Integrated Center for Mass SpectrometryKobe University Graduate School of MedicineKobeJapan
  3. 3.Division of Metabolomics ResearchKobe University Graduate School of MedicineKobeJapan
  4. 4.Division of Lipid Biochemistry, Department of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobeJapan

Personalised recommendations