Journal of Gastroenterology

, Volume 46, Issue 11, pp 1260–1266 | Cite as

Genetic variation in PLCE1 is associated with gastric cancer survival in a Chinese population

  • Dewei Luo
  • Yan Gao
  • Shizhi Wang
  • Meilin Wang
  • Dongmei Wu
  • Wei Wang
  • Ming Xu
  • Jianwei Zhou
  • Weida Gong
  • Yongfei Tan
  • Zhengdong ZhangEmail author
Original Article—Alimentary Tract



Two genome-wide association studies on gastric cancer showed a previously unknown gastric cancer susceptible locus in PLCE1 at 10q23. We hypothesized that the single nucleotide polymorphism (SNP) rs2274223 A/G is associated with the survival rate of gastric cancer.


We genotyped the above SNP in 940 gastric cancer patients to investigate the association between the polymorphism and gastric cancer survival by the TaqMan method.


We found that patients carrying PLCE1 rs2274223 AA genotype survived for a significantly shorter time than those carrying the AG and GG genotypes (log-rank P = 0.046). This significance was enhanced in the dominant model (AA vs. AG/GG, log-rank P = 0.014). Multivariate Cox regression analyses showed that the AG/GG genotypes were associated with a significantly decreased risk of death from gastric cancer [adjusted hazard ratio (HR) = 0.79, 95% confidence interval (CI) = 0.65–0.95]. Most of stratification analysis did not find an enhanced association between the same genotype and prognosis, except for patients with TNM stage III disease (HR = 0.63, 95% CI = 0.48–0.83).


Our findings showed that the PLCE1 SNP rs2274223 was associated with significantly improved gastric cancer survival in a Chinese population. Further functional studies are needed to validate our results.


PLCE1 GWAS Gastric cancer Polymorphism Survival 



This study was partly supported by the National Natural Science Foundation of China (30872084 and 30972444), the National Natural Science Foundation of Jiangsu Province (2010080), the Key Program for Basic Research of Jiangsu Provincial Department of Education (08KJA330001), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Postdoctoral Science Foundation of China (20100481164).

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Parkin DM. International variation. Oncogene. 2004;23:6329–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.PubMedCrossRefGoogle Scholar
  3. 3.
    Crew KD, Neugut AI. Epidemiology of upper gastrointestinal malignancies. Semin Oncol. 2004;31:450–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2011;345:784–9.CrossRefGoogle Scholar
  5. 5.
    Chen SQ, Lin XD, Zhu JW, Tang Y, Lin JY. Association of a MYCL1 single nucleotide polymorphism, rs3134613, with susceptibility to diffuse-type gastric cancer and with differentiation of gastric cancer in a southeast Chinese population. DNA Cell Biol. 2010;29:739–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Guan X, Zhao H, Niu J, Tan D, Ajani JA, Wei Q, et al. Polymorphisms of TGFB1 and VEGF genes and survival of patients with gastric cancer. J Exp Clin Cancer Res. 2009;28:94.PubMedCrossRefGoogle Scholar
  7. 7.
    Hishida A, Matsuo K, Goto Y, Naito M, Wakai K, Tajima K, et al. Combined effect of miR-146a rs2910164 G/C polymorphism and toll-like receptor 4 +3725 G/C polymorphism on the risk of severe gastric atrophy in Japanese. Dig Dis Sci. 2011;56(4):1131–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Nguyen TV, Janssen MJ, van Oijen MG, Bergevoet SM, te Morsche RH, van Asten H, et al. Genetic polymorphisms in GSTA1, GSTP1, GSTT1, and GSTM1 and gastric cancer risk in a Vietnamese population. Oncol Res. 2010;18:349–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Sun LM, Shang Y, Zeng YM, Deng YY, Cheng JF. HOGG1 polymorphism in atrophic gastritis and gastric cancer after Helicobacter pylori eradication. World J Gastroenterol. 2010;16:4476–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Sun Q, Gu H, Zeng Y, Xia Y, Wang Y, Jing Y, et al. Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression. Cancer Sci. 2010;101:2241–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Sakamoto H, Yoshimura K, Saeki N, Katai H, Shimoda T, Matsuno Y, et al. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat Genet. 2008;40:730–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Abnet CC, Freedman ND, Hu N, Wang Z, Yu K, Shu XO, et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet. 2010;42:764–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang LD, Zhou FY, Li XM, Sun LD, Song X, Jing Y, et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet. 2010;42:759–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Wing MR, Bourdon DM, Harden TK. PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv. 2003;3:273–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Bai Y, Edamatsu H, Maeda S, Saito H, Suzuki N, Satoh T, et al. Crucial role of phospholipase C epsilon in chemical carcinogen-induced skin tumor development. Cancer Res. 2004;64:8808–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nürnberg G, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38:1397–405.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang M, Bai J, Tan Y, Wang S, Tian Y, Gong W, et al. Genetic variant in PSCA predicts survival of diffuse-type gastric cancer in a Chinese population. Int J Cancer. 2011;129(5):1207–13.Google Scholar
  18. 18.
    Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.PubMedGoogle Scholar
  19. 19.
    Green FL, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG, et al. AJCC cancer staging manual. 6th ed. New York: Springer Press; 2002. p. 111–118.Google Scholar
  20. 20.
    Ada-Nguema AS, Xenias H, Hofman JM, Wiggins CH, Sheetz MP, Keely PJ. The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLC epsilon. J Cell Sci. 2006;119:1307–19.PubMedCrossRefGoogle Scholar
  21. 21.
    Evellin S, Nolte J, Tysack K, vom Dorp F, Thiel M, Weernink PA, et al. Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J Biol Chem. 2002;277:16805–13.PubMedCrossRefGoogle Scholar
  22. 22.
    Kelley GG, Kaproth-Joslin KA, Reks SE, Smrcka AV, Wojcikiewicz RJ. G-protein-coupled receptor agonists activate endogenous phospholipase C epsilon and phospholipase Cbeta3 in a temporally distinct manner. J Biol Chem. 2006;281:2639–48.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang H, Oestreich EA, Maekawa N, Bullard TA, Vikstrom KL, Dirksen RT, et al. Phospholipase C epsilon modulates beta-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ Res. 2005;97:1305–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Boyer O, Benoit G, Gribouval O, Nevo F, Pawtowski A, Bilge I, et al. Mutational analysis of the PLCE1 gene in steroid resistant nephrotic syndrome. J Med Genet. 2010;47:445–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Gbadegesin R, Bartkowiak B, Lavin PJ, Mukerji N, Wu G, Bowling B, et al. Exclusion of homozygous PLCE1 (NPHS3) mutations in 69 families with idiopathic and hereditary FSGS. Pediatr Nephrol. 2009;24:281–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Gilbert RD, Turner CL, Gibson J, Bass PS, Haq MR, Cross E, et al. Mutations in phospholipase C epsilon 1 are not sufficient to cause diffuse mesangial sclerosis. Kidney Int. 2009;75:415–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Machuca E, Benoit G, Nevo F, Tete MJ, Gribouval O, Pawtowski A, et al. Genotype-phenotype correlations in non-Finnish congenital nephrotic syndrome. J Am Soc Nephrol. 2010;21:1209–17.PubMedCrossRefGoogle Scholar
  28. 28.
    Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12:354–62.PubMedGoogle Scholar
  29. 29.
    Zhang H, Jin G, Li H, Ren C, Ding Y, Zhang Q, et al. Genetic variants at 1q22 and 10q23 reproducibly associated with gastric cancer susceptibility in a Chinese population. Carcinogenesis. 2011;32(6):848–52.Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Dewei Luo
    • 1
  • Yan Gao
    • 1
  • Shizhi Wang
    • 1
  • Meilin Wang
    • 2
  • Dongmei Wu
    • 2
  • Wei Wang
    • 1
  • Ming Xu
    • 1
  • Jianwei Zhou
    • 3
  • Weida Gong
    • 4
  • Yongfei Tan
    • 5
  • Zhengdong Zhang
    • 1
    • 2
    Email author
  1. 1.Department of Molecular and Genetic Toxicology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, School of Public HealthNanjing Medical UniversityNanjingChina
  2. 2.Department of Occupational Medicine and Environmental Health, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjingChina
  3. 3.Department of Molecular Cell Biology and Toxicology, School of Public Health, Cancer CenterNanjing Medical UniversityNanjingChina
  4. 4.Department of General SurgeryYixing Cancer HospitalYixingChina
  5. 5.Department of General SurgeryYixing People’s HospitalYixingChina

Personalised recommendations