Advertisement

Journal of Gastroenterology

, Volume 46, Issue 9, pp 1071–1080 | Cite as

Effect of repetitive transcranial magnetic stimulation on rectal function and emotion in humans

  • Yuuichi Aizawa
  • Joe Morishita
  • Michiko Kano
  • Takayuki Mori
  • Shin-Ichi Izumi
  • Kenichiro Tsutsui
  • Toshio Iijima
  • Motoyori Kanazawa
  • Shin FukudoEmail author
Original Article—Alimentary Tract

Abstract

Background

A previous brain imaging study demonstrated activation of the right dorsolateral prefrontal cortex (DLPFC) during visceral nociception, and this activation was associated with anxiety. We hypothesized that functional modulation of the right DLPFC by repetitive transcranial magnetic stimulation (rTMS) can reveal the actual role of right DLPFC in brain–gut interactions in humans.

Methods

Subjects were 11 healthy males aged 23.5 ± 1.4 (mean ± SE) years. Viscerosensory evoked potential (VEP) with sham (0 mA) or actual (30 mA) electrical stimulation (ES) of the rectum was taken after sham, low frequency rTMS at 0.1 Hz, and high frequency rTMS at 10 Hz to the right DLPFC. Rectal tone was measured with a rectal barostat. Visceral perception and emotion were analyzed using an ordinate scale, rectal barostat, and VEP.

Key results

Low frequency rTMS significantly reduced anxiety evoked by ES at 30 mA (p < 0.05). High frequency rTMS–30 mA ES significantly produced more phasic volume events than sham rTMS–30 mA ES (p < 0.05).

Conclusions and inferences

We successfully modulated the gastrointestinal function of healthy individuals through rTMS to the right DLPFC. Thus, rTMS to the DLPFC appears to modulate the affective, but not direct, component of visceral perception and motility of the rectum.

Keywords

Irritable bowel syndrome (IBS) Repetitive transcranial magnetic stimulation (rTMS) Dorsolateral prefrontal cortex (DLPFC) Viscerosensory evoked potential (VEP) Visceral perception Electroencephalogram (EEG) 

Abbreviations

IBS

Irritable bowel syndrome

rTMS

Repetitive transcranial magnetic stimulation

DLPFC

Dorsolateral prefrontal cortex

VEP

Viscerosensory evoked potential

EEG

Electroencephalogram

Notes

Acknowledgments

This research was supported by a Grant-in-Aid for Scientific Research from Ministry of Education, Culture, Sports, Science and Technology and that of Health, Labour and Welfare, Japan.

Conflict of interest

Authors disclose no conflict of interest and there is no commercial bias in this study.

References

  1. 1.
    Drossman DA. The functional gastrointestinal disorders and the Rome III process. Gastroenterology. 2006;130:1377–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Gralnek IM, Hays RD, Kilbourne A, Naliboff B, Mayer EA. The impact of irritable bowel syndrome on health-related quality of life. Gastroenterology. 2000;119:654–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Amouretti M, Le Pen C, Gaudin AF, Bommelaer G, Frexinos J, Ruszniewski P, et al. Impact of irritable bowel syndrome (IBS) on health-related quality of life (HRQOL). Gastroenterol Clin Biol. 2006;30:241–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Park JM, Choi MG, Kim YS, Choi CH, Choi SC, Hong SJ, et al. Quality of life of patients with irritable bowel syndrome in Korea. Qual Life Res. 2009;18:435–46.PubMedCrossRefGoogle Scholar
  5. 5.
    Gralnek IM, Hays RD, Kilbourne AM, Chang L, Mayer EA. Racial differences in the impact of irritable bowel syndrome on health-related quality of life. J Clin Gastroenterol. 2004;38:782–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology. 2006;130:1480–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Saito YA, Schoenfeld P, Locke GR 3rd. The epidemiology of irritable bowel syndrome in North America: a systematic review. Am J Gastroenterol. 2002;97:1910–5.PubMedGoogle Scholar
  8. 8.
    Kang JY. Systematic review: the influence of geography and ethnicity in irritable bowel syndrome. Aliment Pharmacol Ther. 2005;21:663–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Kanazawa M, Endo Y, Whitehead WE, Kano M, Hongo M, Fukudo S. Patients and nonconsulters with irritable bowel syndrome reporting a parental history of bowel problems have more impaired psychological distress. Dig Dis Sci. 2004;49:1046–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Locke GR 3rd, Yawn BP, Wollan PC, Melton LJ 3rd, Lydick E, Talley NJ. Incidence of a clinical diagnosis of the irritable bowel syndrome in a United States population. Aliment Pharmacol Ther. 2004;19:1025–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Fukudo S, Nomura T, Muranaka M, Taguchi F. Brain–gut response to stress and cholinergic stimulation in irritable bowel syndrome. A preliminary study. J Clin Gastroenterol. 1993;17:133–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Mayer EA, Naliboff BD, Chang L, Coutinho SV. Stress and irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2001;280:G519–24.PubMedGoogle Scholar
  13. 13.
    Fukudo S, Suzuki J. Colonic motility, autonomic function, and gastrointestinal hormones under psychological stress on irritable bowel syndrome. Tohoku J Exp Med. 1987;151:373–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Fukudo S, Kanazawa M, Kano M, Sagami Y, Endo Y, Utsumi A, et al. Exaggerated motility of the descending colon with repetitive distention of the sigmoid colon in patients with irritable bowel syndrome. J Gastroenterol. 2002;37:145–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Whitehead WE, Crowell MD, Robinson JC, Heller BR, Schuster MM. Effects of stressful life events on bowel symptoms: subjects with irritable bowel syndrome compared with subjects without bowel dysfunction. Gut. 1992;33:825–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Chang L, Toner BB, Fukudo S, Guthrie E, Locke GR, Norton NJ, et al. Gender, age, society, culture, and the patient’s perspective in the functional gastrointestinal disorders. Gastroenterology. 2006;130:1435–46.PubMedCrossRefGoogle Scholar
  17. 17.
    Bueno L, Fioramonti J, Delvaux M, Frexinos J. Mediators and pharmacology of visceral sensitivity: from basic to clinical investigations. Gastroenterology. 1997;112:1714–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Whitehead WE, Delvaux M. Standardization of barostat procedures for testing smooth muscle tone and sensory thresholds in the gastrointestinal tract. The working team of Glaxo-Wellcome Research, UK. Dig Dis Sci. 1997;42:223–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Bouin M, Plourde V, Boivin M, Riberdy M, Lupien F, Laganière M, et al. Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology. 2002;122:1771–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Sagami Y, Shimada Y, Tayama J, Nomura T, Satake M, Endo Y, et al. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut. 2004;53:958–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Kanazawa M, Endo M, Yamaguchi K, Hamaguchi T, Whitehead WE, Itoh M, et al. Classical conditioned response of rectosigmoid motility and regional cerebral activity in humans. Neurogastroenterol Motil. 2005;17:705–13.PubMedCrossRefGoogle Scholar
  22. 22.
    Dsmdt JE. Somatosensory CEP in man. In: Cobb WA, editor. Handbook of electrosensory and neurophysiology. Amsterdam: Elsevier; 1971. p. 55–82.Google Scholar
  23. 23.
    Hollerbach S, Kamath MV, Chen Y, Fitzpatrick D, Upton AR, Tougas G. The magnitude of the central response to esophageal electrical stimulation is intensity dependent. Gastroenterology. 1997;112:1137–46.PubMedCrossRefGoogle Scholar
  24. 24.
    Hobson AR, Sarkar S, Furlong PL, Thompson DG, Aziz Q. A cortical evoked potential study of afferents mediating human esophageal sensation. Am J Physiol Gastrointest Liver Physiol. 2000;279:G139–47.PubMedGoogle Scholar
  25. 25.
    Kanazawa M, Nomura T, Fukudo S, Hongo M. Abnormal visceral perception in patients with functional dyspepsia: use of cerebral potentials evoked by electrical stimulation of the oesophagus. Neurogastroenterol Motil. 2000;12:87–94.PubMedCrossRefGoogle Scholar
  26. 26.
    Fukudo S, Kotake C, Kanazawa M, Sagami Y, Nomura T, Hongo M. Exaggerated viscerosensory evoked potentials in irritable bowel syndrome (abstract). Gastroenterology. 2001;120:A4032.Google Scholar
  27. 27.
    Bromm B, Lorenz J. Neurophysiological evaluation of pain. Electroencephalogr Clin Neurophysiol. 1998;107:227–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Kanazawa M, Fukudo S, Nomura T, Hongo M. Electrophysiological correlates of personality influences in visceral perception. JAMA. 2001;286:1974–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Watanabe S, Hattori T, Kanazawa M, Kano M, Fukudo S. Role of histaminergic neurons in hypnotic modulation of brain processing of visceral perception. Neurogastroenterol Motil. 2007;19:831–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Barker AT. The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl. 1999;51:3–21.PubMedGoogle Scholar
  31. 31.
    Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:1106–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Epstein CM, Schwartzberg DG, Davey KR, Sudderth DB. Localizing the site of magnetic brain stimulation in humans. Neurology. 1990;40:666–70.PubMedGoogle Scholar
  33. 33.
    Paus T, Barrett J. Transcranial magnetic stimulation (TMS) of the human frontal cortex: implications for repetitive TMS treatment of depression. J Psychiatry Neurosci. 2004;29:268–79.PubMedGoogle Scholar
  34. 34.
    Fitzgerald PB, Brown T, Marston NAU, Daskalakis ZJ, Kularni J. A double-blind placebo controlled trial of transcranial magnetic stimulation in the treatment of depression. Arch Gen Pschiatry. 2003;60:1002–8.CrossRefGoogle Scholar
  35. 35.
    Fitzgerald PB, Benitez J, de Castella A, Daskalakis ZJ, Brown TL, Kulkarni J. A randomized, controlled trial of sequential bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression. Am J Psychiatry. 2006;163:88–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Grunhaus L, Dannon PN, Schreiber S, Dolberg OH, Amiaz R, Ziv R, et al. Repetitive transcranial magnetic stimulation is as effective as electroconvulsive therapy in the treatment of nondelusional major depressive disorder: an open study. Biol Psychiatry. 2000;47:314–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Isenberg K, Downs D, Pierce K, Svarakic D, Garcia K, Jarvis M, et al. Low frequency rTMS stimulation of the right frontal cortex is as effective as high frequency rTMS stimulation of the left frontal cortex for antidepressant-free, treatment-resistant depressed patients. Ann Clin Psychiatry. 2005;17:153–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Herrmann LL, Ebmeier KP. Factors modifying the efficacy of transcranial magnetic stimulation in the treatment of depression: a review. J Clin Psychiatry. 2006;67:1870–6.PubMedCrossRefGoogle Scholar
  39. 39.
    O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62:1208–16.PubMedCrossRefGoogle Scholar
  40. 40.
    Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004;303:1162–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Terui T, Watanabe S, Kanazawa M, Hamaguchi T, Mine H, Yanai K, et al. Differential modulation of the regional brain by hypnotic suggestion between patients with irritable bowel syndrome, healthy subjects. Gastroenterology. 2007;132:A134.Google Scholar
  42. 42.
    Hamaguchi T, Kano M, Rikimaru H, Kanazawa M, Itoh M, Yanai K, et al. Brain activity during distention of the descending colon in humans. Neurogastroenterol Motil. 2004;16:299–309.PubMedCrossRefGoogle Scholar
  43. 43.
    Kanazawa M, Endo M, Yamaguchi K, Hamaguchi T, Whitehead WE, Itoh M, et al. Classical conditioned response of rectosigmoid motility and regional cerebral activity in humans. Neurogastroenterol Motil. 2005;17:705–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers; 1988.Google Scholar
  45. 45.
    Fukudo S, Nomura T, Hongo M. Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome. Gut. 1998;42:845–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Sloots CE, Felt-Bersma RJ, Meuwissen SG, Kuipers EJ. Influence of gender, parity, and caloric load on gastrorectal response in healthy subjects: a barostat study. Dig Dis Sci. 2003;48:516–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Bell AM, Pemberton JH, Hanson RB, Zinsmeister AR. Variations in muscle tone of the human rectum: recordings with an electromechanical barostat. Am J Physiol. 1991;260:G17–25.PubMedGoogle Scholar
  48. 48.
    Whitehead WE, Delvaux M. Standardization of barostat procedures for testing smooth muscle tone and sensory thresholds in the gastrointestinal tract. The Working Team of Glaxo-Wellcome Research, UK. Dig Dis Sci. 1997;42:223–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Von der Ohe MR, Hanson RB, Camilleri M. Comparison of simultaneous recordings of human colonic contractions by manometry and a barostat. Neurogastroenterol Motil. 1994;6:213–22.Google Scholar
  50. 50.
    Jasper HH. Formal discussion: dendrites. Electroencephalogr Clin Neurophysiol. 1958;10:42–50.Google Scholar
  51. 51.
    Aziz Q, Furlong PL, Barlow J, Hobson A, Alani S, Bancewicz J, et al. Topographic mapping of cortical potentials evoked by distension of the human proximal and distal oesophagus. Electroencephalogr Clin Neurophysiol. 1995;96:219–28.PubMedCrossRefGoogle Scholar
  52. 52.
    Hamdy S, Rothwell JC, Aziz Q, Singh KD, Thompson DG. Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat Neurosci. 1998;1:64–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Hamdy S, Aziz Q, Rothwell JC, Singh KD, Barlow J, Hughes DG, et al. The cortical topography of human swallowing musculature in health and disease. Nat Med. 1996;2:1217–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Hoffman RE, Cavus I. Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. Am J Psychiatry. 2002;159:1093–102.PubMedCrossRefGoogle Scholar
  55. 55.
    Ogawa A, Ukai S, Shinosaki K, Yamamoto M, Kawaguchi S, Ishii R, et al. Slow repetitive transcranial magnetic stimulation increases somatosensory high-frequency oscillations in humans. Neurosci Lett. 2004;358:193–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Sokhadze E, Baruth J, Tasman A, Mansoor M, Ramaswamy R, Sears L, et al. Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related p measures of novelty processing in autism. Appl Psychophysiol Biofeedback. 2010;35:147–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Kimbrell TA, Kimbrell TA, Little JT, Dunn RT, Frye MA, Greenberg BD, et al. Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol Psychiatry. 1999;46:1603–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Speer AM, Kimbrell TA, Wassermann EM D, Repella J, Willis MW, Herscovitch P, et al. Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry. 2000;48:1133–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Nitschke JB, Sarinopoulos I, Mackiewicz KL, Schaefer HS, Davidson RJ. Functional neuroanatomy of aversion and its anticipation. Neuroimage. 2006;29:106–16.PubMedCrossRefGoogle Scholar
  60. 60.
    Rauch SL, Savage CR, Alpert NM, Fischman AJ, Jenike MA. The functional neuroanatomy of anxiety: a study of three disorders using positron emission tomography and symptom provocation. Biol Psychiatry. 1997;42:446–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Dalton KM, Kalin NH, Grist TM, Davidson RJ. Neural-cardiac coupling in threat-evoked anxiety. J Cogn Neurosci. 2005;17:969–80.PubMedCrossRefGoogle Scholar
  62. 62.
    Grimm S, Beck J, Schuepbach D, Hell D, Boesiger P, Bermpohl F, et al. Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder. Biol Psychiatry. 2008;63:369–76.PubMedCrossRefGoogle Scholar
  63. 63.
    Baxter LR Jr, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, et al. Reduction in left prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry. 1989;46:243–50.PubMedGoogle Scholar
  64. 64.
    Buchsbaum MS, Wu J, DeLisi LE, Holcomb H, Kessler R, Johnson J, et al. Frontal cortex and basal ganglia rates assessed by positron emission tomography with (fluorine-18) 2-deoxyglucose in affective illness. J Affect Dis. 1986;10:137–52.PubMedCrossRefGoogle Scholar
  65. 65.
    Drevets WC, Price JL, Simpson JR Jr, Todd RD, Reich T, Vannier M, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386:824–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Drevets WC, Videen TO, Preskorn SH, Preskorn SH, Carmichael ST, Raichle ME. A functional neuroanatomical study of unipolar depression. J Neurosci. 1992;12:3628–41.PubMedGoogle Scholar
  67. 67.
    George MS, Ketter TA, Post RM. Prefrontal cortex dysfunction in clinical depression. Depression. 1994;2:59–72.CrossRefGoogle Scholar
  68. 68.
    Martinot JL, Hardy P, Feline A, Huret JD, Mazoyer B, Attar-Levy D, et al. Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry. 1990;147:1313–7.PubMedGoogle Scholar
  69. 69.
    Avery DH, Holtzheimer PE III, Fawaz W, Russo J, Neumaier J, Dunner DL, et al. A controlled study of repetitive transcranial stimulation in medication-resistant major depression. Biol Psychiatry. 2006;59:187–94.PubMedCrossRefGoogle Scholar
  70. 70.
    George MS, Wassermann EM, Williams WA, Callahan A, Ketter TA, Basser P, et al. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport. 1995;6:1853–6.PubMedCrossRefGoogle Scholar
  71. 71.
    George MS, Wassermann EM, Kimbrell TA, Little JT, Williams WE, Danielson AL, et al. Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo controlled crossover trial. Am J Psychiatry. 1997;154:1752–6.PubMedGoogle Scholar
  72. 72.
    Pascual-Leone A, Rubio B, Pallardó F, Catalá MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet. 1996;348:233–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Rossini D, Lucca A, Zanardi R, Magri L, Smeraldi E. Transcranial magnetic stimulation in treatment-resistant depressed patients: a double-blind, placebo controlled trial. Psychiatry Res. 2005;137:1–10.PubMedCrossRefGoogle Scholar
  74. 74.
    Kauffmann CD, Cheema MA, Miller BE. Slow right prefrontal transcranial magnetic stimulation as a treatment for medication-resistant depression: a double-blind, placebo-controlled study. Depress Anxiety. 2004;19:159–62.CrossRefGoogle Scholar
  75. 75.
    Schutter DJ, Laman DM, van Honk J, Vergouwen AC, Koerselman GF. Partial clinical response to 2 weeks of 2 Hz repetitive transcranial magnetic stimulation to the right parietal cortex in depression. Int J Neuropsychopharmacol. 2009;12:643–50.PubMedCrossRefGoogle Scholar
  76. 76.
    Höppner J, Schulz M, Irmisch G, Mau R, Schläfke D, Richter J. Antidepressant efficacy of two different rTMS procedures. High frequency over left versus low frequency over right prefrontal cortex compared with sham stimulation. Eur Arch Psychiatry Clin Neurosci. 2003;253:103–9.PubMedGoogle Scholar
  77. 77.
    Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci. 2007;10:1116–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Yuuichi Aizawa
    • 1
  • Joe Morishita
    • 1
  • Michiko Kano
    • 1
  • Takayuki Mori
    • 2
  • Shin-Ichi Izumi
    • 2
  • Kenichiro Tsutsui
    • 3
  • Toshio Iijima
    • 3
  • Motoyori Kanazawa
    • 1
  • Shin Fukudo
    • 1
    Email author
  1. 1.Department of Behavioral MedicineTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Department of Physical Medicine and RehabilitationTohoku University Graduate School of MedicineSendaiJapan
  3. 3.Department of Developmental Biology and Neurosciences, Graduate School of Life SciencesTohoku UniversitySendaiJapan

Personalised recommendations