Journal of Gastroenterology

, Volume 45, Issue 3, pp 266–276 | Cite as

The role of infection in the aetiology of inflammatory bowel disease

  • Richard Hansen
  • John M. Thomson
  • Emad M. El-Omar
  • Georgina L. Hold
Review

Abstract

We have greatly increased our understanding of the genetics of inflammatory bowel disease (IBD) in the last decade; however, migrant studies highlight the importance of environment in disease risk. The possibility that IBD is an infection has been debated since the first description of Crohn’s disease. Mycobacterium avium paratuberculosis was the first organism to be suggested as an IBD pathogen, and it has been argued that it fulfils Koch’s postulates and could be designated the cause of Crohn’s disease. Other organisms have been postulated as possible IBD pathogens, including various Helicobacter species, one of which has been identified in primate colitis; others are widely used in animal models of IBD. Adherent-invasive Escherichia coli appear specific to ileal Crohn’s disease and have been shown to induce the release of TNF-α, a key cytokine in IBD inflammation. The aim of this article is to give a concise overview of the infections postulated as being relevant to the onset of IBD. We will also briefly cover the immunology underpinning IBD, in addition to reviewing current knowledge regarding other microorganisms that are associated with modifying the risk of developing IBD. It may be that infectious organisms have an orchestrator role in the development of dysbiosis and subsequently IBD.

Keywords

Inflammatory bowel disease Crohn’s disease Ulcerative colitis Infection Aetiology 

References

  1. 1.
    Dalziel TK. Chronic interstitial enteritis. BMJ. 1913;2:1068–70.Google Scholar
  2. 2.
    Crohn BB, Ginsberg L, Oppenheimer GD. Regional ileitis: a clinical and pathological entity. JAMA. 1932;99:1323–9.Google Scholar
  3. 3.
    Pierce ES. Where are all the Mycobacterium avium subspecies paratuberculosis in patients with Crohn’s disease? PLoS Pathog. 2009;5(3):e1000234.Google Scholar
  4. 4.
    Loftus EV. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology. 2004;126(6):1504–17.PubMedGoogle Scholar
  5. 5.
    Asakura K, Nishiwaki Y, Inoue N, Hibi T, Watanabe M, Takebayashi T. Prevalence of ulcerative colitis and Crohn’s disease in Japan. J Gastroenterol. 2009;44(7):659–65.PubMedGoogle Scholar
  6. 6.
    Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–60.PubMedGoogle Scholar
  7. 7.
    Rook GAW. Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology. 2009;126(1):3–11.PubMedGoogle Scholar
  8. 8.
    Himmel ME, Hardenberg G, Piccirillo CA, Steiner TS, Levings MK. The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease. Immunology. 2008;125(2):145–53.PubMedGoogle Scholar
  9. 9.
    Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, Mckenzie B, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116(5):1310–6.PubMedGoogle Scholar
  10. 10.
    McGovern D, Powrie F. The IL23 axis plays a key role in the pathogenesis of IBD. Gut. 2007;56(10):1333–6.PubMedGoogle Scholar
  11. 11.
    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3.PubMedGoogle Scholar
  12. 12.
    Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52(1):65–70.PubMedGoogle Scholar
  13. 13.
    Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol. 2005;6(4):331–7.PubMedGoogle Scholar
  14. 14.
    Kim JM, Rudensky A. The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol Rev. 2006;212(1):86–98.PubMedGoogle Scholar
  15. 15.
    Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.PubMedGoogle Scholar
  16. 16.
    Kullberg MC, Ward JM, Gorelick PL, Caspar P, Hieny S, Cheever A, et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12-and gamma interferon-dependent mechanism. Infect Immunol. 1998;66(11):5157–66.Google Scholar
  17. 17.
    Van Limbergen J, Russell RK, Nimmo ER, Satsangi J. The genetics of inflammatory bowel disease. Am J Gastroenterol. 2007;102(12):2820–31.PubMedGoogle Scholar
  18. 18.
    Ishihara S, Aziz MM, Yuki T, Kazumori H, Kinoshita Y. Inflammatory bowel disease: review from the aspect of genetics. J Gastroenterol. 2009;44(11):1097–108.Google Scholar
  19. 19.
    Hugot JP, Laurent-Puig P, Gower-Rousseau C, Olson JM, Lee JC, Beaugerie L, et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature. 1996;379:821–3.PubMedGoogle Scholar
  20. 20.
    Sartor RB. Intestinal microflora in human and experimental inflammatory bowel disease. Curr Opin Gastroenterol. 2001;17(4):324–30.PubMedGoogle Scholar
  21. 21.
    Farrell RJ, LaMont JT. Microbial factors in inflammatory bowel disease. Gastroenterol Clin North Am. 2002;31(1):41–62.PubMedGoogle Scholar
  22. 22.
    Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel disease. Gut. 2004;53(1):1–4.PubMedGoogle Scholar
  23. 23.
    Rosenstiel P, Fantini M, Bräutigam K, Kühbacher T, Waetzig GH, Seegert D, et al. TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003;124(4):1001–9.PubMedGoogle Scholar
  24. 24.
    van Heel DA, Hunt KA, King K, Ghosh S, Gabe SM, Mathew CG, et al. Detection of muramyl dipeptide-sensing pathway defects in patients with Crohn’s disease. Inflamm Bowel Dis. 2006;12(7):598–605.PubMedGoogle Scholar
  25. 25.
    Inohara N, Ogura Y, Nuñez G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr Opin Microbiol. 2002;5(1):76–80.PubMedGoogle Scholar
  26. 26.
    Goyette P, Labbe C, Trinh TT, Xavier RJ. Molecular pathogenesis of inflammatory bowel disease: genotypes, phenotypes and personalized medicine. Ann Med. 2007;39(3):177–99.PubMedGoogle Scholar
  27. 27.
    Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T, et al. Deficient host-bacteria interactions in inflammatory bowel disease? The Toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut. 2004;53(7):987–92.Google Scholar
  28. 28.
    Török HP, Glas J, Tonenchi L, Bruennler G, Folwaczny M, Folwaczny C. Crohn’s disease is associated with a Toll-like receptor-9 polymorphism. Gastroenterology. 2004;127(1):365–6.Google Scholar
  29. 29.
    Mizoguchi A, Mizoguchi E. Inflammatory bowel disease, past, present and future: lessons from animal models. J Gastroenterol. 2008;43(1):1–17.PubMedGoogle Scholar
  30. 30.
    Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2006;39(2):207–11.PubMedGoogle Scholar
  31. 31.
    Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1b production. Nature. 2008;456:264–8.PubMedGoogle Scholar
  32. 32.
    Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol. 2007;7(10):767–77.PubMedGoogle Scholar
  33. 33.
    Hold GL, El-Omar EM. Genetic aspects of inflammation and cancer. Biochem J. 2008;410(2):225–35.PubMedGoogle Scholar
  34. 34.
    Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–66.PubMedGoogle Scholar
  35. 35.
    Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–34.PubMedGoogle Scholar
  36. 36.
    Tancrède C. Role of human microflora in health and disease. Eur J Clin Microbiol Infect Dis. 1992;11(11):1012–5.PubMedGoogle Scholar
  37. 37.
    Bengmark S. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut. 1998;42(1):2–7.PubMedGoogle Scholar
  38. 38.
    O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688–93.PubMedGoogle Scholar
  39. 39.
    Frankel WL, Zhang W, Singh A, Klurfeld DM, Don S, Sakata T, et al. Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon. Gastroenterology. 1994;106(2):375–80.PubMedGoogle Scholar
  40. 40.
    Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett. 2002;217(2):133–9.PubMedGoogle Scholar
  41. 41.
    Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immunol. 1998;66(11):5224–31.Google Scholar
  42. 42.
    Mitchell DN, Rees RJ. Agent transmissible from Crohn’s disease tissue. Lancet. 1970;2(7665):168–71.PubMedGoogle Scholar
  43. 43.
    Cave DR, Mitchell DN, Kane SP, Brooke BN. Further animal evidence of a transmissible agent in Crohn’s disease. Lancet. 1973;2(7838):1120–2.PubMedGoogle Scholar
  44. 44.
    Victor RG, Kirsner JB, Palmer WL. Failure to induce ulcerative colitis experimentally with filtrates of feces and rectal mucosa. Gastroenterology. 1950;14:398–400.Google Scholar
  45. 45.
    Van Kruiningen HJ, Colombel JF, Cartun RW, Whitlock RH, Koopmans M, Kangro HO, et al. An in-depth study of Crohn’s disease in two French families. Gastroenterology. 1993;104(2):351–60.PubMedGoogle Scholar
  46. 46.
    Herthnek D, Nielsen SS, Lindberg A, Bölske G. A robust method for bacterial lysis and DNA purification to be used with real-time PCR for detection of Mycobacterium avium subsp. paratuberculosis in milk. J Microbiol Methods. 2008;75:335–40.PubMedGoogle Scholar
  47. 47.
    Greenstein RJ. Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet Infect Dis. 2003;3(8):507–14.PubMedGoogle Scholar
  48. 48.
    Koch R. Die Aetiologie der Tuberkulose. Mittbeilungen Kaiserlichen Gesundbeitsamte. 1884;2:1–88.Google Scholar
  49. 49.
    Chiodini RJ, Van Kruiningen HJ, Thayer WR, Merkal RS, Coutu JA. Possible role of mycobacteria in inflammatory bowel disease. Dig Dis Sci. 1984;29(12):1073–9.PubMedGoogle Scholar
  50. 50.
    Gitnick G, Collins J, Beaman B, Brooks D, Arthur M, Imaeda T, et al. Preliminary report on isolation of mycobacteria from patients with Crohn’s disease. Dig Dis Sci. 1989;34(6):925–32.PubMedGoogle Scholar
  51. 51.
    McFadden JJ, Butcher PD, Chiodini R, Hermon-Taylor J. Crohn’s disease-isolated mycobacteria are identical to Mycobacterium paratuberculosis, as determined by DNA probes that distinguish between mycobacterial species. J Clin Microbiol. 1987;25(5):796–801.PubMedGoogle Scholar
  52. 52.
    Sartor RB. Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut. 2005;54(7):896–8.PubMedGoogle Scholar
  53. 53.
    Knight P, Campbell BJ, Rhodes JM. Host–bacteria interaction in inflammatory bowel disease. Br Med Bull. 2008;88(1):95–113.PubMedGoogle Scholar
  54. 54.
    Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. NEJM. 2001;345(15):1098–104.PubMedGoogle Scholar
  55. 55.
    Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.PubMedGoogle Scholar
  56. 56.
    Johnson LD, Ausman LM, Sehgal PK, King NW. A prospective study of the epidemiology of colitis and colon cancer in cotton-top tamarins (Saguinus oedipus). Gastroenterology. 1996;110(1):102–15.PubMedGoogle Scholar
  57. 57.
    Saunders KE, Shen Z, Dewhirst FE, Paster BJ, Dangler CA, Fox JG. Novel intestinal Helicobacter species isolated from cotton-top tamarins (Saguinus oedipus) with chronic colitis. J Clin Microbiol. 1999;37(1):146–51.Google Scholar
  58. 58.
    Dewhirst FE, Fox JG, Mendes EN, Paster BJ, Gates CE, Kirkbride CA, et al. ‘Flexispira rappini’ strains represent at least 10 Helicobacter taxa. Int J Syst Evol Microbiol. 2000;50(5):1781–7.Google Scholar
  59. 59.
    Cahill RJ, Foltz CJ, Fox JG, Dangler CA, Powrie F, Schauer DB. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect Immunol. 1997;65(8):3126–31.Google Scholar
  60. 60.
    Shomer NH, Dangler CA, Schrenzel MD, Fox JG. Helicobacter bilis-induced inflammatory bowel disease in scid mice with defined flora. Infect Immunol. 1997;65(11):4858–64.Google Scholar
  61. 61.
    Kuehl CJ, Wood HD, Marsh TL, Schmidt TM, Young VB. Colonization of the cecal mucosa by Helicobacter hepaticus impacts the diversity of the indigenous microbiota. Infect Immunol. 2005;73(10):6952–61.Google Scholar
  62. 62.
    Whary MT, Danon SJ, Feng Y, Ge Z, Sundina N, Ng V, et al. Rapid onset of ulcerative typhlocolitis in B6. 129P2-IL10 tm1Cgn (IL-10−/−) mice infected with Helicobacter trogontum is associated with decreased colonization by altered Schaedler’s Flora. Infect Immunol. 2006;74(12):6615–23.Google Scholar
  63. 63.
    Jergens AE, Wilson-Welder JH, Dorn A, Henderson A, Liu Z, Evans RB, et al. Helicobacter bilis triggers persistent immune reactivity to antigens derived from the commensal bacteria in gnotobiotic C3H/HeN mice. Gut. 2007;56(7):934–40.PubMedGoogle Scholar
  64. 64.
    Fox JG. Helicobacter bilis: bacterial provocateur orchestrates host immune responses to commensal flora in a model of inflammatory bowel disease. Gut. 2007;56(7):898–900.PubMedGoogle Scholar
  65. 65.
    Totten PA, Fennell CL, Tenover FC, Wezenberg JM, Perine PL, Stamm WE, et al. Campylobacter cinaedi (sp. nov.) and Campylobacter fennelliae (sp. nov.): two new Campylobacter species associated with enteric disease in homosexual men. J Infect Dis. 1985;151(1):131–9.PubMedGoogle Scholar
  66. 66.
    Bell SJ, Chisholm SA, Owen RJ, Borriello SP, Kamm MA. Evaluation of Helicobacter species in inflammatory bowel disease. Aliment Pharmacol Ther. 2003;18(5):481–6.PubMedGoogle Scholar
  67. 67.
    Grehan M, Danon S, Lee A, Daskalopoulos G, Mitchell H. Absence of mucosa-associated colonic helicobacters in an Australian urban population. J Clin Microbiol. 2004;42(2):874–6.Google Scholar
  68. 68.
    Zhang L, Day A, McKenzie G, Mitchell H. Nongastric Helicobacter species detected in the intestinal tract of children. J Clin Microbiol. 2006;44(6):2276–9.PubMedGoogle Scholar
  69. 69.
    Thomson JM, Hold G, Berry SH, El-Sakka NE, Mowat NA, Shen Z, et al. Variable detection of entero-hepatic Helicobacter species in colonic mucosal pinch biopsies by different molecular techniques. Gastroenterology. 2008;134(4):A655.Google Scholar
  70. 70.
    Hansen R, El-Sakka NE, Berry SH, Thompson JM, Bisset WM, Mahdi G, et al. Are non-pylori helicobacter organisms associated with paediatric ulcerative colitis? Retrospective observational study. Gastroenterology. 2009;136(5):A671.Google Scholar
  71. 71.
    Darfeuille-Michaud A, Neut C, Barnich N, Lederman E, Di Martino P, Desreumaux P, et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology. 1998;115(6):1405–13.PubMedGoogle Scholar
  72. 72.
    Boudeau J, Glasser AL, Masseret E, Joly B, Darfeuille-Michaud A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn’s disease. Infect Immunol. 1999;67(9):4499–509.Google Scholar
  73. 73.
    Glasser AL, Boudeau J, Barnich N, Perruchot MH, Colombel JF, Darfeuille-Michaud A. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immunol. 2001;69(9):5529–37.Google Scholar
  74. 74.
    MacDonald TT, Hutchings P, Choy MY, Murch S, Cooke A. Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inflamed human intestine. Clin Exp Immunol. 1990;81(2):301–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Murch SH, Braegger CP, Walker-Smith JA, MacDonald TT. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut. 1993;34(12):1705–9.PubMedGoogle Scholar
  76. 76.
    Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127(2):412–21.PubMedGoogle Scholar
  77. 77.
    Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1(5):403–18.Google Scholar
  78. 78.
    Simpson KW, Dogan B, Rishniw M, Goldstein RE, Klaessig S, McDonough PL, et al. Adherent and invasive Escherichia coli is associated with granulomatous colitis in Boxer dogs. Infect Immunol. 2006;74(8):4778–92.Google Scholar
  79. 79.
    Porter CK, Tribble DR, Aliaga PA, Halvorson HA, Riddle MS. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology. 2008;135(3):781–6.PubMedGoogle Scholar
  80. 80.
    Valcheva R, Slingerland B, Farrant A, Gänzle MG, Dieleman LA. Prebiotics maintain biodiversity of the intestinal microbiota and reduce colitis in HLA-B27 transgenic rats. Gastroenterology. 2009;136(5):A21.Google Scholar
  81. 81.
    Gradel KO, Nielsen HL, Schønheyder HC, Ejlertsen T, Kristensen B, Nielsen H. Increased short-and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology. 2009;137(2):495–501.PubMedGoogle Scholar
  82. 82.
    Rodríguez LAG, Ruigómez A, Panés J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology. 2006;130(6):1588–94.Google Scholar
  83. 83.
    Helms M, Simonsen J, Molbak K. Foodborne bacterial infection and hospitalization: a registry-based study. Clin Infect Dis. 2006;15,42(4):498–506.Google Scholar
  84. 84.
    Ternhag A, Törner A, Svensson Å, Ekdahl K, Giesecke J. Short-and long-term effects of bacterial gastrointestinal infections. Emerg Infect Dis. 2008;14(1):143–8.PubMedGoogle Scholar
  85. 85.
    Zhang L, Man SM, Day AS, Leach ST, Lemberg DA, Dutt S, et al. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn’s disease. J Clin Microbiol. 2009;47(2):453–5.PubMedGoogle Scholar
  86. 86.
    On SLW. Taxonomy, phylogeny, and methods for the identification of campylobacter species. In: Ketley JM, editor. Campylobacter: molecular and cellular biology. 1st ed. Norwich: Horizon Bioscience; 2005. p. 13–42.Google Scholar
  87. 87.
    Barnes RM, Allan S, Taylor-Robinson CH, Finn R, Johnson PM. Serum antibodies reactive with Saccharomyces cerevisiae in inflammatory bowel disease: is IgA antibody a marker for Crohn’s disease? Int Arch Allergy Appl Immunol. 1990;92(1):9–15.PubMedGoogle Scholar
  88. 88.
    McKenzie H, Main J, Pennington CR, Parratt D. Antibody to selected strains of Saccharomyces cerevisiae (baker’s and brewer’s yeast) and Candida albicans in Crohn’s disease. Gut. 1990;31(5):536–8.Google Scholar
  89. 89.
    Heelan BT, Allan S, Barnes RMR. Identification of a 200-kDa glycoprotein antigen of Saccharomyces cerevisiae. Immunol Lett. 1991;28(3):181–5.PubMedGoogle Scholar
  90. 90.
    Standaert–Vitse A, Jouault T, Vandewalle P, Mille C, Seddik M, Sendid B, et al. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn’s disease. Gastroenterology. 2006;130(6):1764–75.Google Scholar
  91. 91.
    Bernhardt H, Knoke M. Mycological aspects of gastrointestinal microflora. Scand J Gastroenterol Suppl. 1997;222:102–6.PubMedGoogle Scholar
  92. 92.
    Mavromanolakis E, Maraki S, Cranidis A, Tselentis Y, Kontoyiannis DP, Samonis G. The impact of norfloxacin, ciprofloxacin and ofloxacin on human gut colonization by Candida albicans. Scand J Infect Dis. 2001;33(6):477–8.PubMedGoogle Scholar
  93. 93.
    Krause R, Schwab E, Bachhiesl D, Daxbock F, Wenisch C, Krejs GJ, et al. Role of Candida in antibiotic-associated diarrhea. J Infect Dis. 2001;184(8):1065–9.Google Scholar
  94. 94.
    Standaert-Vitse A, Sendid B, Joossens M, François N, Vandewalle-El Khoury P, Branche J, et al. Candida albicans colonization and ASCA in familial Crohn’s disease. Am J Gastroenterol. 2009;104(7):1745–53.PubMedGoogle Scholar
  95. 95.
    Ott SJ, Kuhbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol. 2008;43(7):831–41.PubMedGoogle Scholar
  96. 96.
    Pironi L, Bonvicini F, Gionchetti P, D’Errico A, Rizzello F, Corsini C, et al. Parvovirus B19 infection localized in the intestinal mucosa and associated with severe inflammatory bowel disease. J Clin Microbiol. 2009;47(5):1591–5.PubMedGoogle Scholar
  97. 97.
    Khan RR, Lawson AD, Minnich LL, Martin K, Nasir A, Emmett MK, et al. Gastrointestinal norovirus infection associated with exacerbation of inflammatory bowel disease. JPGN. 2009;48(3):328–33.Google Scholar
  98. 98.
    Weinberg I, Neuman T, Margalit M, Ayman F, Wolf DG, Ben-Yehuda A. Epstein–Barr virus-related diarrhea or exacerbation of inflammatory bowel disease: a diagnostic dilemma. J Clin Microbiol. 2009;47(5):1588–90.Google Scholar
  99. 99.
    Hommes DW, Sterringa G, van Deventer SJH, Tytgat GNJ, Weel J. The pathogenicity of cytomegalovirus in inflammatory bowel disease. A systematic review and evidence-based recommendations for future research. Inflamm Bowel Dis. 2004;10(3):245–50.PubMedGoogle Scholar
  100. 100.
    Wakefield AJ, Pittilo RM, Sim R, Cosby SL, Stephenson JR, Dhillon AP, et al. Evidence of persistent measles virus infection in Crohn’s disease. J Med Virol. 1993;39(4):345–53.PubMedGoogle Scholar
  101. 101.
    Ghosh S, Armitage E, Wilson DC, Minor PD, Afzal MA. Detection of persistent measles virus infection in Crohn’s disease: current status of experimental work. Gut. 2001;48(6):748–52.PubMedGoogle Scholar
  102. 102.
    Reddy A, Fried B. An update on the use of helminths to treat Crohn’s and other autoimmunune diseases. Parasitol Res. 2009;104(2):217–21.PubMedGoogle Scholar
  103. 103.
    Weinstock JV, Elliott DE. Helminths and the IBD hygiene hypothesis. Inflamm Bowel Dis. 2009;15(1):128–33.PubMedGoogle Scholar
  104. 104.
    Elliott DE, Urban JOEF, Argo CK, Weinstock JV. Does the failure to acquire helminthic parasites predispose to Crohn’s disease? FASEB J. 2000;14(12):1848–55.PubMedGoogle Scholar
  105. 105.
    Summers RW, Elliott DE, Urban JF, Thompson R, Weinstock JV. Trichuris suis therapy in Crohn’s disease. Gut. 2005;54(1):87–90.PubMedGoogle Scholar
  106. 106.
    Summers RW, Elliott DE, Urban JF, Thompson RA, Weinstock JV. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology. 2005;128(4):825–32.PubMedGoogle Scholar
  107. 107.
    Croese J, O’Neil J, Masson J, Cooke S, Melrose W, Pritchard D, et al. A proof of concept study establishing Necator americanus in Crohn’s patients and reservoir donors. Gut. 2006;55(1):136–7.Google Scholar
  108. 108.
    Thornton JR, Emmett PM, Heaton KW. Diet and Crohn’s disease: characteristics of the pre-illness diet. BMJ. 1979;2(6193):762–4.PubMedGoogle Scholar
  109. 109.
    Persson PG, Ahlbom A, Hellers G. Diet and inflammatory bowel disease: a case–control study. Epidemiology. 1992;3(1):47–52.PubMedGoogle Scholar
  110. 110.
    Gilat T, Hacohen D, Lilos P, Langman MJS. Childhood factors in ulcerative colitis and Crohn’s disease: an international cooperative study. Scand J Gastroenterol. 1987;22(8):1009–24.PubMedGoogle Scholar
  111. 111.
    Gerasimidis K, McGrogan P, Garrick V, Hassan K, Edwards CA. Effect of exclusive enteral nutrition on colonic bacterial activity in paediatric Crohn’s disease. Proc Nutr Soc. 2009;67(OCE8):E425.Google Scholar
  112. 112.
    Heuschkel RB, Menache CC, Megerian JT, Baird AE. Enteral nutrition and corticosteroids in the treatment of acute Crohn’s disease in children. JPGN. 2000;31(1):8–15.PubMedGoogle Scholar
  113. 113.
    Griffiths AM. Enteral feeding in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. 2006;9(3):314–8.PubMedGoogle Scholar
  114. 114.
    Heuschkel R. Enteral nutrition in Crohn disease: more than just calories. JPGN. 2004;38(3):239–41.PubMedGoogle Scholar
  115. 115.
    Griffiths AM, Carricato M. Enteral nutrition in inflammatory bowel disease. In: Koletzko B, Cooper P, Makrides M, Garza C, Uauy R, Wang W, editors. Pediatric nutrition in practice. Basel: Karger; 2008. p. 219–23.Google Scholar
  116. 116.
    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.PubMedGoogle Scholar
  117. 117.
    Man SM, Zhang L, Day AS, Leach S, Mitchell H. Detection of enterohepatic and gastric Helicobacter species in fecal specimens of children with Crohn’s disease. Helicobacter. 2008;13(4):234–8.Google Scholar
  118. 118.
    Fox JG, Yan LL, Dewhirst FE, Paster BJ, Shames B, Murphy JC, et al. Helicobacter bilis sp. nov., a novel Helicobacter species isolated from bile, livers, and intestines of aged, inbred mice. J Clin Microbiol. 1995;33(2):445–54.PubMedGoogle Scholar
  119. 119.
    Fox JG, Dewhirst FE, Shen Z, Feng Y, Taylor NS, Paster BJ, et al. Hepatic Helicobacter species identified in bile and gallbladder tissue from Chileans with chronic cholecystitis. Gastroenterology. 1998;114(4):755–63.PubMedGoogle Scholar
  120. 120.
    Stanley J, Linton D, Burnens AP, Dewhirst FE, Owen RJ, Porter A, et al. Helicobacter canis sp. nov., a new species from dogs: an integrated study of phenotype and genotype. Microbiology. 1993;139(10):2495–504.Google Scholar
  121. 121.
    Vandamme P, Harrington CS, Jalava K, On SLW. Misidentifying helicobacters: the Helicobacter cinaedi example. J Clin Microbiol. 2000;38(6):2261–6.PubMedGoogle Scholar
  122. 122.
    Vandamme P, Falsen E, Rossau R, Hoste B, Segers, Tytgat R, et al. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Evol Microbiol. 1991;41(1):88–103.Google Scholar
  123. 123.
    Fox JG, Dewhirst FE, Tully JG, Paster BJ, Yan L, Taylor NS, et al. Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J Clin Microbiol. 1994;32(5):1238–45.PubMedGoogle Scholar
  124. 124.
    Stanley J, Linton D, Burnens AP, Dewhirst FE, On SLW, Porter A, et al. Helicobacter pullorum sp. nov.-genotype and phenotype of a new species isolated from poultry and from human patients with gastroenteritis. Microbiology. 1994;140(12):3441–9.PubMedGoogle Scholar
  125. 125.
    Fox JG, Chien CC, Dewhirst FE, Paster BJ, Shen Z, Melito PL, et al. Helicobacter canadensis sp. nov. isolated from humans with diarrhea as an example of an emerging pathogen. J Clin Microbiol. 2000;38(7):2546–9.PubMedGoogle Scholar
  126. 126.
    Tee W, Montgomery J, Dyall-Smith M. Bacteremia caused by a Helicobacter pullorum-like organism. Clin Infect Dis. 2001;33(10):1789–91.PubMedGoogle Scholar
  127. 127.
    Mendes EN, Queiroz DMM, Dewhirst FE, Paster BJ, Moura SB, Fox JG. Helicobacter trogontum sp. nov., isolated from the rat intestine. Int J Syst Evol Microbiol. 1996;46(4):916–21.Google Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Richard Hansen
    • 1
  • John M. Thomson
    • 1
  • Emad M. El-Omar
    • 1
  • Georgina L. Hold
    • 1
  1. 1.Gastrointestinal Research Group, Division of Applied Medicine, Institute of Medical SciencesAberdeen UniversityForesterhillUK

Personalised recommendations