Advertisement

Journal of Gastroenterology

, Volume 43, Issue 12, pp 942–950 | Cite as

Association of a genetic polymorphism in ectonucleotide pyrophosphatase/phosphodiesterase 1 with hepatitis C virus infection and hepatitis C virus core antigen levels in subjects in a hyperendemic area of Japan

  • Yuka Takahama
  • Hirofumi Uto
  • Shuji Kanmura
  • Makoto Oketani
  • Akio Ido
  • Kazunori Kusumoto
  • Satoru Hasuike
  • Kenji Nagata
  • Katsuhiro Hayashi
  • Sherri Stuver
  • Akihiko Okayama
  • Hirohito Tsubouchi
Liver, Pancreas, and Biliary Tract
  • 78 Downloads

Abstract

Background

The clinical course of chronic hepatitis C virus (HCV) infection is strongly associated with insulin resistance and obesity. The K121Q polymorphism in the ectonucleotide pyrophosphatase/phosphodiesterase (ENPP)-1 gene and the rs7566605 genotype located near insulin-induced gene 2 have been shown to be associated with insulin resistance and obesity. This study examined whether the K121Q polymorphism in ENPP1 or the rs7566605 genotype is associated with the clinical course of HCV infection.

Methods

The relationships between the clinical characteristics of 469 anti-HCV antibody-seropositive subjects (353 were positive for HCV core antigen or RNA, whereas 116 were negative for HCV RNA) and the polymorphisms were analyzed.

Results

No significant differences in body mass index, plasma glucose level, serum insulin level, and other biochemical markers were observed between subgroups of subjects with different genotypes at the K121Q polymorphism or rs7566605. The frequency of the homozygous wild-type genotype at K121Q in HCV carriers, however, was significantly higher than that in subjects who were negative for HCV RNA (84.5% vs. 75.9%; P < 0.05). Moreover, in HCV carriers, HCV core antigen levels in subjects homozygous for the wild-type genotype at K121Q were significantly higher than in heterozygous carriers of K121Q (5358 fmol/l vs. 4002 fmol/l; P = 0.04). In contrast, the rs7566605 genotype was not associated with hepatitis C viremia or with the HCV core antigen level.

Conclusions

The K121Q variant of ENPP1 may be associated with hepatitis C viremia and core antigen levels in HCV carriers.

Key words

hepatitis C virus ENPP1 insulin resistance viremia single nucleotide polymorphism HCV core antigen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seeff LB. Natural history of chronic hepatitis C. Hepatology 2002;36:S35–46.PubMedCrossRefGoogle Scholar
  2. 2.
    Villano SA, Vlahov D, Nelson KE, Cohn S, Thomas DL. Persistence of viremia and the importance of long-term follow-up after acute hepatitis C infection. Hepatology 1999;29:908–914.PubMedCrossRefGoogle Scholar
  3. 3.
    Thomas DL, Astemborski J, Rai RM, Anania FA, Schaeffer M, Galai N, et al. The natural history of hepatitis C virus infection: host, viral, and environmental factors. JAMA 2000;284:450–456.PubMedCrossRefGoogle Scholar
  4. 4.
    Thursz M, Yallop R, Goldin R, Trepo C, Thomas HC. Influence of MHC class II genotype on outcome of infection with hepatitis C virus. Lancet 1999;354:2119–2124.PubMedCrossRefGoogle Scholar
  5. 5.
    Kenny-Walsh E for the Irish Hepatology Research Group. Overweight and obesity, hepatic steatosis, and progression of chronic hepatitis C: a retrospective study on a large cohort of patients in the United States. J Hepatol 2004;40:147–154.Google Scholar
  6. 6.
    Cammà C, Bruno S, Di Marco V, Di Bona D, Rumi M, Vinci M, et al. Insulin resistance is associated with steatosis in nondiabetic patients with genotype 1 chronic hepatitis C. Hepatology 2006;43:64–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Abate N, Chandalia M, Satija P, Adams-Huet B, Grundy SM, Sandeep S, et al. ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes. Diabetes 2005;54:1207–1213.PubMedCrossRefGoogle Scholar
  8. 8.
    Bacci S, Ludovico O, Prudente S, Zhang YY, Di Paola R, Mangiacotti D, et al. The K121Q polymorphism of the ENPP1/PC-1 gene is associated with insulin resistance/atherogenic phenotypes, including earlier onset of type 2 diabetes and myocardial infarction. Diabetes 2005;54:3021–3025.PubMedCrossRefGoogle Scholar
  9. 9.
    Grarup N, Urhammer SA, Ek J, Albrechtsen A, Glumer C, Borch-Johnsen K, et al. Studies of the relationship between the ENPP1 K121Q polymorphism and type 2 diabetes, insulin resistance and obesity in 7,333 Danish white subjects. Diabetologia 2006;49:2097–2104.PubMedCrossRefGoogle Scholar
  10. 10.
    Böttcher Y, Körner A, Reinehr T, Enigk B, Kiess W, Stumvoll M, Kovacs P. ENPP1 variants and haplotypes predispose to early onset obesity and impaired glucose and insulin metabolism in German obese children. J Clin Endocrinol Metab 2006;91:4948–4952.PubMedCrossRefGoogle Scholar
  11. 11.
    Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C, Vatin V, et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 2005;37:863–867.PubMedCrossRefGoogle Scholar
  12. 12.
    Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, et al. A common genetic variant is associated with adult and childhood obesity. Science 2006;312:279–283.PubMedCrossRefGoogle Scholar
  13. 13.
    Keshavarz P, Inoue H, Sakamoto Y, Kunika K, Tanahashi T, Nakamura N, et al. No evidence for association of the ENPP1 (PC-1) K121Q variant with risk of type 2 diabetes in a Japanese population. J Hum Genet 2006;51:559–566.PubMedCrossRefGoogle Scholar
  14. 14.
    Weedon MN, Shields B, Hitman G, Walker M, McCarthy MI, Hattersley AT, Frayling TM. No evidence of association of ENPP1 variants with type 2 diabetes or obesity in a study of 8,089 U.K. Caucasians. Diabetes 2006;55:3175–3179.PubMedCrossRefGoogle Scholar
  15. 15.
    Lyon HN, Florez JC, Bersaglieri T, Saxena R, Winckler W, Almgren P, et al. Common variants in the ENPP1 gene are not reproducibly associated with diabetes or obesity. Diabetes 2006;55:3180–3184.PubMedCrossRefGoogle Scholar
  16. 16.
    Uto H, Hayashi K, Kusumoto K, Hasuike S, Nagata K, Kodama M, et al. Spontaneous elimination of hepatitis C virus RNA in individuals with persistent infection in a hyperendemic area of Japan. Hepatol Res 2006;34:28–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Hayashi K, Hasuike S, Kusumoto K, Ido A, Uto H, Kenji N, et al. Usefulness of a new immuno-radiometric assay to detect hepatitis C core antigen in a community-based population. J Viral Hepat 2005;12:106–110.PubMedCrossRefGoogle Scholar
  18. 18.
    Suruki R, Hayashi K, Kusumoto K, Uto H, Ido A, Tsubouchi H, Stuver SO. Alanine aminotransferase level as a predictor of hepatitis C virus-associated hepatocellular carcinoma incidence in a community-based population in Japan. Int J Cancer 2006;119:192–195.PubMedCrossRefGoogle Scholar
  19. 19.
    Kusumoto K, Uto H, Hayashi K, Takahama Y, Nakao H, Suruki R, et al. Interleukin-10 or tumor necrosis factor-alpha polymorphisms and the natural course of hepatitis C virus infection in a hyperendemic area of Japan. Cytokine 2006;34:24–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Dong H, Maddux BA, Altomonte J, Meseck M, Accili D, Terkeltaub R, et al. Increased hepatic levels of the insulin receptor inhibitor, PC-1/NPP-1, induce insulin resistance and glucose intolerance. Diabetes 2005;54:367–372.PubMedCrossRefGoogle Scholar
  21. 21.
    Hamaguchi K, Terao H, Kusuda Y, Yamashita T, Hazoury Bahles JA, Cruz LL M, et al. The PC-1 Q121 allele is exceptionally prevalent in the Dominican Republic and is associated with type 2 diabetes. J Clin Endocrinol Metab 2004;89:1359–1364.PubMedCrossRefGoogle Scholar
  22. 22.
    Pizzuti A, Frittitta L, Argiolas A, Baratta R, Goldfine ID, Bozzali M, et al. A polymorphism (K121Q) of the human glycoprotein PC-1 gene coding region is strongly associated with insulin resistance. Diabetes 1999;48:1881–1884.PubMedCrossRefGoogle Scholar
  23. 23.
    Costanzo BV, Trischitta V, Di Paola R, Spampinato D, Pizzuti A, Vigneri R, Frittitta L. The Q allele variant (GLN121) of membrane glycoprotein PC-1 interacts with the insulin receptor and inhibits insulin signaling more effectively than the common K allele variant (LYS121). Diabetes 2001;50:831–836.PubMedCrossRefGoogle Scholar
  24. 24.
    Keshavarz P, Inoue H, Sakamoto Y, Kunika K, Tanahashi T, Nakamura N, et al. No evidence for association of the ENPP1 (PC-1) K121Q variant with risk of type 2 diabetes in a Japanese population. J Hum Genet 2006;51:559–566.PubMedCrossRefGoogle Scholar
  25. 25.
    Yabe D, Brown MS, Goldstein JL. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci USA 2002;99:12753–12758.PubMedCrossRefGoogle Scholar
  26. 26.
    Takaishi K, Duplomb L, Wang MY, Li J, Unger RH. Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc Natl Acad Sci U S A 2004;101:7106–7111.PubMedCrossRefGoogle Scholar
  27. 27.
    Deng HW, Deng H, Liu YJ, Liu YZ, Xu FH, Shen H, et al. A genomewide linkage scan for quantitative-trait loci for obesity phenotypes. Am J Hum Genet 2002;70:1138–1151.PubMedCrossRefGoogle Scholar
  28. 28.
    Lyon HN, Emilsson V, Hinney A, Heid IM, Lasky-Su J, Zhu X, et al. The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts. PLoS Genet 2007;27:627–633.Google Scholar
  29. 29.
    Kumar J, Sunkishala RR, Karthikeyan G, Sengupta S. The common genetic variant upstream of INSIG2 gene is not associated with obesity in Indian population. Clin Genet 2007;71:415–418.PubMedCrossRefGoogle Scholar
  30. 30.
    Smith AJ, Cooper JA, Li LK, Humphries SE. INSIG2 gene polymorphism is not associated with obesity in Caucasian, Afro-Caribbean and Indian subjects. Int J Obes (Lond) 2007;31:1753–1755.CrossRefGoogle Scholar
  31. 31.
    Goncales NS, Costa FF, VAssallo J, Concales FL. Diagnosis of hepatitis C virus in Brazilian blood donors using a reverse transcriptase nested polymerase chain reaction: comparison with enzyme immunoassay and recombinant protein immunoblot assay. Rev Inst Med Trop Sao Paulo 2000;42:263–267.PubMedGoogle Scholar
  32. 32.
    Schröter M, Schäfer P, Zöllner B, Polywka S, Laufs R, Feucht HH. Strategies for reliable diagnosis of hepatitis C infection: the need for a serological confirmatory assay. J Med Virol 2001;64:320–324.PubMedCrossRefGoogle Scholar
  33. 33.
    Nishiguchi S, Kuroki T, Ueda T, Fukuda K, Takeda T, Nakajima S, et al. Detection of hepatitis C virus antibody in the absence of viral RNA in patients with autoimmune hepatitis. Ann Intern Med 1992;116:21–25.PubMedGoogle Scholar
  34. 34.
    Gregorio GV, Choudhuri K, Ma Y, Pensati P, Iorio R, Grant P, et al. Mimicry between the hepatitis C virus polyprotein and antigenic targets of nuclear and smooth muscle antibodies in chronic hepatitis C virus infection. Clin Exp Immunol 2003;133:404–413.PubMedCrossRefGoogle Scholar
  35. 35.
    Micallef JM, Kaldor JM, Dore GJ. Spontaneous viral clearance following acute hepatitis C infection: a systematic review of longitudinal studies. J Viral Hepat 2006;13:34–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Hoofnagle JH. Course and outcome of hepatitis C. Hepatology 2002;36:S21–S29.PubMedCrossRefGoogle Scholar
  37. 37.
    Inoue G, Horiike N, Michitaka K, Onji M. Hepatitis C virus clearance is prominent in women in an endemic area. J Gastroenterol Hepatol 2000;15:1054–1058.PubMedCrossRefGoogle Scholar
  38. 38.
    Alric L, Fort M, Izopet J, Vinel JP, Bureau C, Sandre K, et al. Study of host- and virus-related factors associated with spontaneous hepatitis C virus clearance. Tissue Antigens 2000;56:154–158.PubMedCrossRefGoogle Scholar
  39. 39.
    Bakr I, Rekacewicz C, El Hosseiny M, Ismail S, El Daly M, El-Kafrawy S, et al. Higher clearance of hepatitis C virus infection in females compared with males. Gut 2006;55:1183–1187.PubMedCrossRefGoogle Scholar
  40. 40.
    Hill AV. Immunogenetics and genomics. Lancet 2001;357:2037–2041.PubMedCrossRefGoogle Scholar
  41. 41.
    Piasecki BA, Lewis JD, Reddy KR, Bellamy SL, Porter SB, Weinrieb RM, et al. Influence of alcohol use, race, and viral coinfections on spontaneous HCV clearance in a US veterans population. Hepatology 2004;40:892–899.PubMedGoogle Scholar
  42. 42.
    Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C, Vatin V, et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 2005;37:863–867.PubMedCrossRefGoogle Scholar
  43. 43.
    Harmey D, Hessle L, Nabisawa S, Johnsof KA, Terkeltaub R, Millán JL. Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 2004;164:1199–1209.PubMedGoogle Scholar
  44. 44.
    Rollo EE, Hempson SJ, Bansal A, Tsao E, Habib I, Rittling SR, et al. The cytokine osteopontin modulates the severity of rotavirus diarrhea. J Virol 2005;79:3509–3516.PubMedCrossRefGoogle Scholar
  45. 45.
    Naito M, Matsui A, Inao M, Nagoshi S, Nagano M, Ito N, et al. SNPs in the promoter region of the osteopontin gene as a marker predicting the efficacy of interferon-based therapies in patients with chronic hepatitis C. J Gastroenterol 2005;40:381–388.PubMedCrossRefGoogle Scholar
  46. 46.
    Woitas RP, Ahlenstiel G, Iwan A, Rockstroh JK, Brackmann HH, Kupfer B, et al. Frequency of the HIV-protective CC chemokine receptor 5-Δ32/Δ32 genotype is increased in hepatitis C. Gastroenterology 2002;122:1721–1728.PubMedCrossRefGoogle Scholar
  47. 47.
    Blatt LM, Mutchnick MG, Tong MJ, Klion FM, Lebovics E, Freilich B, et al. Assessment of hepatitis C virus RNA and genotype from 6807 patients with chronic hepatitis C in the United States. J Viral Hepatol 2000;7:196–202.CrossRefGoogle Scholar
  48. 48.
    Kato N, Lan KH, Ono-Nita SK, Shiratori Y, Omata M. Hepatitis C virus nonstructural region 5A protein is a potent transcriptional activator. J Virol 1997;71:8856–8859.PubMedGoogle Scholar
  49. 49.
    Jin DY, Wang HL, Zhou Y, Chun AC, Kibler KV, Hou YD, et al. Hepatitis C virus core protein-induced loss of LZIP function correlates with cellular transformation. EMBO J 2000;19:729–740.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2008

Authors and Affiliations

  • Yuka Takahama
    • 1
    • 2
  • Hirofumi Uto
    • 3
  • Shuji Kanmura
    • 3
  • Makoto Oketani
    • 3
  • Akio Ido
    • 3
  • Kazunori Kusumoto
    • 4
  • Satoru Hasuike
    • 4
  • Kenji Nagata
    • 4
  • Katsuhiro Hayashi
    • 5
  • Sherri Stuver
    • 6
    • 7
  • Akihiko Okayama
    • 2
  • Hirohito Tsubouchi
    • 3
  1. 1.Miyazaki Prefectural Industrial Support FoundationMiyazakiJapan
  2. 2.Department of Rheumatology, Infectious Diseases and Laboratory MedicineUniversity of MiyazakiKiyotakeJapan
  3. 3.Department of Digestive and Life-style Related DiseaseKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
  4. 4.Gastroenterology and Hematology, Faculty of MedicineUniversity of MiyazakiKiyotakeJapan
  5. 5.Center for Medical Education, Faculty of MedicineUniversity of MiyazakiKiyotakeJapan
  6. 6.Department of EpidemiologyBoston University School of Public HealthBostonUSA
  7. 7.Department of EpidemiologyHarvard School of Public HealthBostonUSA

Personalised recommendations