Journal of Gastroenterology

, Volume 43, Issue 11, pp 858–865

Downregulation of CPI-17 contributes to dysfunctional motility in chronic intestinal inflammation model mice and ulcerative colitis patients

  • Takashi Ohama
  • Masatoshi Hori
  • Masahiko Fujisawa
  • Masaharu Kiyosue
  • Masaki Hashimoto
  • Yuka Ikenoue
  • Yoshio Jinno
  • Hiroto Miwa
  • Takayuki Matsumoto
  • Takahisa Murata
  • Hiroshi Ozaki
Alimmentary Tract



Chronic intestinal inflammation is frequently accompanied by motility disorders. We previously reported that proinflammatory cytokines, such as tumor necrosis factor α and interleukin (IL)-1β downregulate CPI-17, an endogenous inhibitor of serine/threonine protein phosphatase in smooth-muscle cells, which results in the inhibition of myosin light chain phosphorylation and contractility. However, its clinical relevance has not been clarified.


The present study examined the changes in CPI-17 expression in chronic intestinal inflammation using smooth-muscle tissues from IL-10 knockout mice and from patients with ulcerative colitis (UC).


The IL-10 knockout mice developed spontaneous and chronic colitis accompanied by immune cell infiltration, submucosal fibrosis, and thickening of the muscularis externa. The expression of α-smooth muscle actin protein in the smooth-muscle layer did not change, whereas that of CPI-17 protein was decreased by about 40% compared with healthy wild-type controls. Consistent with this observation, smooth-muscle contractile force and myosin light chain phosphorylation induced by a muscarinic agonist were reduced in the knockout mice. Moreover, we observed that CPI-17 protein expression was decreased in smooth-muscle tissues from patients with UC compared with controls.


CPI-17 downregulation might contribute to the decreased motor function in chronic inflammatory bowel diseases.

Key words

CPI-17 IL-10 colitis ulcerative colitis contraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993;75:263–274.PubMedCrossRefGoogle Scholar
  2. 2.
    Kawachi S, Jennings S, Panes J, Cockrell A, Laroux FS, Gray L, et al. Cytokine and endothelial cell adhesion molecule expression in interleukin-10-deficient mice. Am J Physiol Gastrointest Liver Physiol 2000;278:G734–G743.PubMedGoogle Scholar
  3. 3.
    Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G, et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 1996;98:1010–1020.PubMedCrossRefGoogle Scholar
  4. 4.
    Sanovic S, Lamb DP, Blennerhassett MG. Damage to the enteric nervous system in experimental colitis. Am J Pathol 1999;155:1051–1057.PubMedGoogle Scholar
  5. 5.
    Galeazzi F, Haapala EM, van Rooijen N, Vallance BA, Collins SM. Inflammation-induced impairment of enteric nerve function in nematode-infected mice is macrophage dependent. Am J Physiol Gastrointest Liver Physiol 2000;278:G259–G265.PubMedGoogle Scholar
  6. 6.
    Jacobson K, McHugh K, Collins SM. Experimental colitis alters myenteric nerve function at inflamed and noninflamed sites in the rat. Gastroenterology 1995;109:718–722.PubMedCrossRefGoogle Scholar
  7. 7.
    Kinoshita K, Horiguchi K, Fujisawa M, Kobirumaki F, Yamato S, Hori M, et al. Possible involvement of muscularis resident macrophages in impairment of interstitial cells of Cajal and myenteric nerve systems in rat models of TNBS-induced colitis. Histochem Cell Biol 2007;127:41–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Lu G, Qian X, Berezin I, Telford GL, Huizinga JD, Sarna SK. Inflammation modulates in vitro colonic myoelectric and contractile activity and interstitial cells of Cajal. Am J Physiol 1997;273:G1233–G1245.PubMedGoogle Scholar
  9. 9.
    Der T, Bercik P, Donnelly G, Jackson T, Berezin I, Collins SM, et al. Interstitial cells of Cajal and inflammation-induced motor dysfunction in the mouse small intestine. Gastroenterology 2000;119:1590–1599.PubMedCrossRefGoogle Scholar
  10. 10.
    Chang IY, Glasgow NJ, Takayama I, Horiguchi K, Sanders KM, Ward SM. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J Physiol 2001;536:555–568.PubMedCrossRefGoogle Scholar
  11. 11.
    Faussone-Pellegrini MS, Gay J, Vannucchi MG, Corsani L, Fioramonti J. Alterations of neurokinin receptors and interstitial cells of Cajal during and after jejunal inflammation induced by Nippostrongylus brasiliensis in the rat. Neurogastroenterol Motil 2002;14:83–95.PubMedCrossRefGoogle Scholar
  12. 12.
    Suzuki T, Won KJ, Horiguchi K, Kinoshita K, Hori M, Torihashi S, et al. Muscularis inflammation and the loss of interstitial cells of Cajal in the endothelin ETB receptor null rat. Am J Physiol Gastrointest Liver Physiol 2004;287:G638–G646.PubMedCrossRefGoogle Scholar
  13. 13.
    Kiyosue M, Fujisawa M, Kinoshita K, Hori M, Ozaki H. Different susceptibilities of spontaneous rhythmicity and myogenic contractility to intestinal muscularis inflammation in the hapten-induced colitis. Neurogastroenterol Motil 2006;18:1019–1030.PubMedCrossRefGoogle Scholar
  14. 14.
    Won KJ, Suzuki T, Hori M, Ozaki H. Motility disorder in experimentally obstructed intestine: relationship between muscularis inflammation and disruption of the ICC network. Neurogastroenterol Motil 2006;18:53–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Akbarali HI, Pothoulakis C, Castagliuolo I. Altered ion channel activity in murine colonic smooth muscle myocytes in an experimental colitis model. Biochem Biophys Res Commun 2000;275:637–642.PubMedCrossRefGoogle Scholar
  16. 16.
    Kinoshita K, Sato K, Hori M, Ozaki H, Karaki H. Decrease in activity of smooth muscle L-type Ca2+ channels and its reversal by NF-kappaB inhibitors in Crohn’s colitis model. Am J Physiol Gastrointest Liver Physiol 2003;285:G483–G493.PubMedGoogle Scholar
  17. 17.
    Liu X, Rusch NJ, Striessnig J, Sarna SK. Down-regulation of Ltype calcium channels in inflamed circular smooth muscle cells of the canine colon. Gastroenterology 2001;120:480–489.PubMedCrossRefGoogle Scholar
  18. 18.
    Kang M, Morsy N, Jin X, Lupu F, Akbarali HI. Protein and gene expression of Ca2+ channel isoforms in murine colon: effect of inflammation. Pflugers Arch 2004;449:288–297.PubMedGoogle Scholar
  19. 19.
    Shi XZ, Pazdrak K, Saada N, Dai B, Palade P, Sarna SK. Negative transcriptional regulation of human colonic smooth muscle Cav1.2 channels by p50 and p65 subunits of nuclear factor-kappaB. Gastroenterology 2005;129:1518–1532.PubMedCrossRefGoogle Scholar
  20. 20.
    Shi XZ, Sarna SK. G protein-mediated dysfunction of excitation-contraction coupling in ileal inflammation. Am J Physiol Gastrointest Liver Physiol 2004;286:G899–G905.PubMedCrossRefGoogle Scholar
  21. 21.
    Kamm KE, Stull JT. Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol 1989;51:299–313.PubMedCrossRefGoogle Scholar
  22. 22.
    Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003;83:1325–1358.PubMedGoogle Scholar
  23. 23.
    Ito M, Nakano T, Erdodi F, Hartshorne DJ. Myosin phosphatase: structure, regulation and function. Mol Cell Biochem 2004;259:197–209.PubMedCrossRefGoogle Scholar
  24. 24.
    Eto M, Ohmori T, Suzuki M, Furuya K, Morita F. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem (Tokyo) 1995;118:1104–1107.Google Scholar
  25. 25.
    Hamaguchi T, Ito M, Feng J, Seko T, Koyama M, Machida H, et al. Phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by protein kinase N. Biochem Biophys Res Commun 2000;274:825–830.PubMedCrossRefGoogle Scholar
  26. 26.
    Kitazawa T, Eto M, Woodsome TP, Brautigan DL. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem 2000;275:9897–9900.PubMedCrossRefGoogle Scholar
  27. 27.
    Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, et al. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett 2000;475:197–200.PubMedCrossRefGoogle Scholar
  28. 28.
    Ohama T, Hori M, Sato K, Ozaki H, Karaki H. Chronic treatment with interleukin-1beta attenuates contractions by decreasing the activities of CPI-17 and MYPT-1 in intestinal smooth muscle. J Biol Chem 2003;278:48794–48804.PubMedCrossRefGoogle Scholar
  29. 29.
    Ohama T, Hori M, Momotani E, Iwakura Y, Guo F, Kishi H, et al. Intestinal inflammation downregulates smooth muscle CPI-17 through induction of TNF-alpha and causes motility disorders. Am J Physiol Gastrointest Liver Physiol 2007;292:G1429–G1438.PubMedCrossRefGoogle Scholar
  30. 30.
    Lichtiger S, Present DH, Kornbluth A, Gelernt I, Bauer J, Galler G, et al. Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med 1994;330:1841–1845.PubMedCrossRefGoogle Scholar
  31. 31.
    Sakamoto K, Hori M, Izumi M, Oka T, Kohama K, Ozaki H, et al. Inhibition of high K+-induced contraction by the ROCKs inhibitor Y-27632 in vascular smooth muscle: possible involvement of ROCKs in a signal transduction pathway. J Pharmacol Sci 2003;92:56–69.PubMedCrossRefGoogle Scholar
  32. 32.
    Ikenoue Y, Tagami T, Murata M. Development and validation of a novel IL-10 deficient cell transfer model for colitis. Int Immunopharmacol 2005;5:993–1006.PubMedCrossRefGoogle Scholar
  33. 33.
    Blennerhassett MG, Vignjevic P, Vermillion DL, Collins SM. Inflammation causes hyperplasia and hypertrophy in smooth muscle of rat small intestine. Am J Physiol 1992;262:G1041–G1046.PubMedGoogle Scholar
  34. 34.
    Vermillion DL, Collins SM. Increased responsiveness of jejunal longitudinal muscle in Trichinella-infected rats. Am J Physiol 1988;254:G124–G129.PubMedGoogle Scholar
  35. 35.
    Hierholzer C, Kalff JC, Billiar TR, Bauer AJ, Tweardy DJ, Harbrecht BG. Induced nitric oxide promotes intestinal inflammation following hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol 2004;286:G225–G233.PubMedCrossRefGoogle Scholar
  36. 36.
    Kalff JC, Schraut WH, Simmons RL, Bauer AJ. Surgical manipulation of the gut elicits an intestinal muscularis inflammatory response resulting in postsurgical ileus. Ann Surg 1998;228:652–663.PubMedCrossRefGoogle Scholar
  37. 37.
    Koyluoglu G, Kaya T, Bagcivan I, Yildiz T. Effect of L-NAME on decreased ileal muscle contractility induced by peritonitis in rats. J Pediatr Surg 2002;37:901–905.PubMedCrossRefGoogle Scholar
  38. 38.
    Akiho H, Blennerhassett P, Deng Y, Collins SM. Role of IL-4, IL-13, and STAT6 in inflammation-induced hypercontractility of murine smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2002;282:G226–G232.PubMedGoogle Scholar
  39. 39.
    Akiho H, Lovato P, Deng Y, Ceponis PJ, Blennerhassett P, Collins SM. Interleukin-4-and-13-induced hypercontractility of human intestinal muscle cells-implication for motility changes in Crohn’s disease. Am J Physiol Gastrointest Liver Physiol 2005;288:G609–G615.PubMedCrossRefGoogle Scholar
  40. 40.
    Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 1995;182:1281–1290.PubMedCrossRefGoogle Scholar
  41. 41.
    Kinoshita K, Hori M, Fujisawa M, Sato K, Ohama T, Momotani E, et al. Role of TNF-alpha in muscularis inflammation and motility disorder in a TNBS-induced colitis model: clues from TNF-alpha-deficient mice. Neurogastroenterol Motil 2006;18:578–588.PubMedCrossRefGoogle Scholar
  42. 42.
    Schwarz NT, Kalff JC, Turler A, Speidel N, Grandis JR, Billiar TR, et al. Selective jejunal manipulation causes postoperative pan-enteric inflammation and dysmotility. Gastroenterology 2004;126:159–169.PubMedCrossRefGoogle Scholar
  43. 43.
    D’Haens GR. Infliximab (Remicade), a new biological treatment for Crohn’s disease. Ital J Gastroenterol Hepatol 1999;31:519–520.PubMedGoogle Scholar
  44. 44.
    Teoh H, Zacour M, Wener AD, Gunaratnam L, Ward ME. Increased myofibrillar protein phosphatase-1 activity impairs rat aortic smooth muscle activation after hypoxia. Am J Physiol Heart Circ Physiol 2003;284:H1182–H1189.PubMedGoogle Scholar
  45. 45.
    Xie Z, Su W, Guo Z, Pang H, Post SR, Gong MC. Up-regulation of CPI-17 phosphorylation in diabetic vasculature and high glucose cultured vascular smooth muscle cells. Cardiovasc Res 2006;69:491–501.PubMedCrossRefGoogle Scholar
  46. 46.
    Mueed I, Zhang L, MacLeod KM. Role of the PKC/CPI-17 pathway in enhanced contractile responses of mesenteric arteries from diabetic rats to alpha-adrenoceptor stimulation. Br J Pharmacol 2005;146:972–982.PubMedCrossRefGoogle Scholar
  47. 47.
    Chang S, Hypolite JA, Disanto ME, Changolkar A, Wein AJ, Chacko S. Increased basal phosphorylation of detrusor smooth muscle myosin in Alloxan-induced diabetic rabbit is mediated by up-regulation of Rho-kinase beta and CPI-17. Am J Physiol Renal Physiol 2006;290:F650–F656.PubMedCrossRefGoogle Scholar
  48. 48.
    Sakai H, Chiba Y, Hirano T, Misawa M. Possible involvement of CPI-17 in augmented bronchial smooth muscle contraction in antigen-induced airway hyper-responsive rats. Mol Pharmacol 2005;68:145–151.PubMedGoogle Scholar

Copyright information

© Springer Japan 2008

Authors and Affiliations

  • Takashi Ohama
    • 1
  • Masatoshi Hori
    • 1
  • Masahiko Fujisawa
    • 1
  • Masaharu Kiyosue
    • 1
  • Masaki Hashimoto
    • 2
  • Yuka Ikenoue
    • 2
  • Yoshio Jinno
    • 3
  • Hiroto Miwa
    • 3
  • Takayuki Matsumoto
    • 3
  • Takahisa Murata
    • 1
  • Hiroshi Ozaki
    • 1
  1. 1.Department of Veterinary Pharmacology, Graduate School of Agriculture and Life SciencesThe University of TokyoTokyoJapan
  2. 2.Gastroenterology Research, Drug Discovery Department II, Pharmaceutical Research LaboratoriesAjinomoto Pharmaceutical Company, Inc.KawasakiJapan
  3. 3.Department of Internal MedicineHyogo College of MedicineHyogoJapan

Personalised recommendations