Journal of Gastroenterology

, Volume 43, Issue 12, pp 905–911 | Cite as

Molecular targeting therapy for pancreatic cancer: current knowledge and perspectives from bench to bedside

  • Toru Furukawa
Review

Abstract

Current medical interventions for pancreatic cancer are insufficient. Recent molecular investigations have elucidated complex genetic mechanisms of cancer that especially involve multiple signal transduction pathways; this enables us to develop molecular medicines targeting specific genetic molecules in the pathways. These molecular medicines seem to promise clues for curing cancers, including pancreatic cancer. This review describes current knowledge and perspectives regarding the development of molecular medicines for pancreatic cancer by focusing on growth factor receptor systems and three major signal transduction pathways: the RAS-MAPK, PI3K-AKT-mTOR, and hedgehog pathways.

Key words

pancreatic cancer molecular targeting RAS-MAPK PI3K-AKT hedgehog 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Group TJCSR. Cancer incidence and incidence rates in Japan in 2000: estimates based on data from 11 population-based cancer registries. Jpn J Clin Oncol 2006;36:668–675.CrossRefGoogle Scholar
  2. 2.
    Matsuno S, Egawa S, Fukuyama S, Motoi F, Sunamura M, Isaji S, et al. Pancreatic Cancer Registry in Japan: 20 years of experience. Pancreas 2004;28:219–230.PubMedCrossRefGoogle Scholar
  3. 3.
    Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med 2008;358:1160–1174.PubMedCrossRefGoogle Scholar
  4. 4.
    Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007;25:1960–1966.PubMedCrossRefGoogle Scholar
  5. 5.
    Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497–1500.PubMedCrossRefGoogle Scholar
  6. 6.
    Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 2005;97:643–655.PubMedCrossRefGoogle Scholar
  7. 7.
    Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J, et al. Erlotinib in lung cancer: molecular and clinical predictors of outcome. N Engl J Med 2005;353:133–144.PubMedCrossRefGoogle Scholar
  8. 8.
    Han SW, Kim TY, Jeon YK, Hwang PG, Im SA, Lee KH, et al. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin Cancer Res 2006;12:2538–2544.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee J, Jang KT, Ki CS, Lim T, Park YS, Lim HY, et al. Impact of epidermal growth factor receptor (EGFR) kinase mutations, EGFR gene amplifications, and KRAS mutations on survival of pancreatic adenocarcinoma. Cancer (Phila) 2007;109:1561–1569.CrossRefGoogle Scholar
  10. 10.
    Jimeno A, Tan AC, Coffa J, Rajeshkumar NV, Kulesza P, Rubio-Viqueira B, et al. Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer Res 2008;68:2841–2849.PubMedCrossRefGoogle Scholar
  11. 11.
    Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ, et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 2008;13:385–393.PubMedCrossRefGoogle Scholar
  12. 12.
    von Marschall Z, Cramer T, Hocker M, Burde R, Plath T, Schirner M, et al. De novo expression of vascular endothelial growth factor in human pancreatic cancer: evidence for an autocrine mitogenic loop. Gastroenterology 2000;119:1358–1372.CrossRefGoogle Scholar
  13. 13.
    Wey JS, Fan F, Gray MJ, Bauer TW, McCarty MF, Somcio R, et al. Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines. Cancer (Phila) 2005;104:427–438.CrossRefGoogle Scholar
  14. 14.
    Kindler HL, Friberg G, Singh DA, Locker G, Nattam S, Kozloff M, et al. Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 2005;23:8033–8040.PubMedCrossRefGoogle Scholar
  15. 15.
    Kindler HL, Niedzwiecki D, Hollis D, Oraefo D, Schrag D, Hurwitz H, et al. A double-blind, placebo-controlled, randomized phase III trial of gemcitabine (G) plus bevacizumab (B) versus gemcitabine plus placebo (P) in patients (pts) with advanced pancreatic cancer (PC): a preliminary analysis of Cancer and Leukemia Group B (CALGB). 2007 ASCO annual meeting proceedings (post-meeting edition). J Clin Oncol 2007;25(18S):4508.Google Scholar
  16. 16.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988;53:549–554.PubMedCrossRefGoogle Scholar
  17. 17.
    Calhoun ES, Jones JB, Ashfaq R, Adsay V, Baker SJ, Valentine V, et al. BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol 2003;163:1255–1260.PubMedGoogle Scholar
  18. 18.
    Gutkind JS. Signaling networks and cell cycle control: the molecular basis of cancer and other diseases. Totowa, NJ: Humana Press; 2000.CrossRefGoogle Scholar
  19. 19.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature (Lond) 2002;417:949–954.CrossRefGoogle Scholar
  20. 20.
    Keyse SM. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol 2000;12:186–192.PubMedCrossRefGoogle Scholar
  21. 21.
    Furukawa T, Sunamura M, Motoi F, Matsuno S, Horii A. Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. Am J Pathol 2003;162:1807–1815.PubMedGoogle Scholar
  22. 22.
    Sebti SM, Adjei AA. Farnesyltransferase inhibitors. Semin Oncol 2004;31:28–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Ito T, Kawata S, Tamura S, Igura T, Nagase T, Miyagawa JI, et al. Suppression of human pancreatic cancer growth in BALB/c nude mice by manumycin, a farnesyl:protein transferase inhibitor. Jpn J Cancer Res 1996;87:113–116.PubMedGoogle Scholar
  24. 24.
    Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol 2004;22:1430–1438.PubMedCrossRefGoogle Scholar
  25. 25.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. (Lond) 2001;411:494–498.Google Scholar
  26. 26.
    Fleming JB, Shen GL, Holloway SE, Davis M, Brekken RA. Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: justification for K-ras-directed therapy. Mol Cancer Res 2005;3:413–423.PubMedCrossRefGoogle Scholar
  27. 27.
    Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000;351(pt 2):289–305.PubMedCrossRefGoogle Scholar
  28. 28.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004;64:7099–7109.PubMedCrossRefGoogle Scholar
  29. 29.
    Siu LL, Awada A, Takimoto CH, Piccart M, Schwartz B, Giannaris T, et al. Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res 2006;12:144–151.PubMedCrossRefGoogle Scholar
  30. 30.
    Allen LF, Sebolt-Leopold J, Meyer MB. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin Oncol 2003;30:105–116.PubMedCrossRefGoogle Scholar
  31. 31.
    Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB, et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 2004;22:4456–4462.PubMedCrossRefGoogle Scholar
  32. 32.
    Karakas B, Bachman KE, Park BH. Mutation of the PIK3CA oncogene in human cancers. Br J Cancer 2006;94:455–459.PubMedCrossRefGoogle Scholar
  33. 33.
    Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell 2000;103:253–262.PubMedCrossRefGoogle Scholar
  34. 34.
    Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4:648–657.PubMedCrossRefGoogle Scholar
  35. 35.
    Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature (Lond) 2007;448:439–444.CrossRefGoogle Scholar
  36. 36.
    Schlieman MG, Fahy BN, Ramsamooj R, Beckett L, Bold RJ. Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br J Cancer 2003;89:2110–2115.PubMedCrossRefGoogle Scholar
  37. 37.
    Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA. The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene 2004;23:8571–8580.PubMedCrossRefGoogle Scholar
  38. 38.
    Asano T, Yao Y, Shin S, McCubrey J, Abbruzzese JL, Reddy SA. Insulin receptor substrate is a mediator of phosphoinositide 3-kinase activation in quiescent pancreatic cancer cells. Cancer Res 2005;65:9164–9168.PubMedCrossRefGoogle Scholar
  39. 39.
    Bondar VM, Sweeney-Gotsch B, Andreeff M, Mills GB, McConkey DJ. Inhibition of the phosphatidylinositol 3′-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther 2002;1:989–997.PubMedGoogle Scholar
  40. 40.
    Ng SSW, Tsao MS, Chow S, Hedley DW. Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res 2000;60:5451–5455.PubMedGoogle Scholar
  41. 41.
    Adjei AA, Hidalgo M. Intracellular signal transduction pathway proteins as targets for cancer therapy. J Clin Oncol 2005;23:5386–5403.PubMedCrossRefGoogle Scholar
  42. 42.
    Dudkin L, Dilling MB, Cheshire PJ, Harwood FC, Hollingshead M, Arbuck SG, et al. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res 2001;7:1758–1764.PubMedGoogle Scholar
  43. 43.
    Ito D, Fujimoto K, Mori T, Kami K, Koizumi M, Toyoda E, et al. In vivo antitumor effect of the mTOR inhibitor CCI-779 and gemcitabine in xenograft models of human pancreatic cancer. Int J Cancer 2006;118:2337–2343.PubMedCrossRefGoogle Scholar
  44. 44.
    Raymond E, Alexandre J, Faivre S, Vera K, Materman E, Boni J, et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 2004;22:2336–2347.PubMedCrossRefGoogle Scholar
  45. 45.
    Punt CJ, Boni J, Bruntsch U, Peters M, Thielert C. Phase I and pharmacokinetic study of CCI-779, a novel cytostatic cell-cycle inhibitor, in combination with 5-fluorouracil and leucovorin in patients with advanced solid tumors. Ann Oncol 2003;14:931–937.PubMedCrossRefGoogle Scholar
  46. 46.
    Duran I, Kortmansky J, Singh D, Hirte H, Kocha W, Goss G, et al. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer 2006;95:1148–1154.PubMedCrossRefGoogle Scholar
  47. 47.
    Motzer RJ, Hudes GR, Curti BD, McDermott DF, Escudier BJ, Negrier S, et al. Phase I/II trial of temsirolimus combined with interferon alfa for advanced renal cell carcinoma. J Clin Oncol 2007;25:3958–3964.PubMedCrossRefGoogle Scholar
  48. 48.
    Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007;356:2271–2281.PubMedCrossRefGoogle Scholar
  49. 49.
    Manegold PC, Paringer C, Kulka U, Krimmel K, Eichhorn ME, Wilkowski R, et al. Antiangiogenic therapy with mammalian target of rapamycin inhibitor RAD001 (Everolimus) increases radiosensitivity in solid cancer. Clin Cancer Res 2008;14:892–900.PubMedCrossRefGoogle Scholar
  50. 50.
    O’Donnell A, Faivre S, Burris HA III, Rea D, Papadimitrakopoulou V, Shand N, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 2008;26:1588–1595.PubMedCrossRefGoogle Scholar
  51. 51.
    Mita MM, Mita AC, Chu QS, Rowinsky EK, Fetterly GJ, Goldston M, et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol 2008;26:361–367.PubMedCrossRefGoogle Scholar
  52. 52.
    Rizzieri DA, Feldman E, Dipersio JF, Gabrail N, Stock W, Strair R, et al. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2008;14:2756–2762.PubMedCrossRefGoogle Scholar
  53. 53.
    Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996;85:841–851.PubMedCrossRefGoogle Scholar
  54. 54.
    Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature (Lond) 2003;425:851–856.CrossRefGoogle Scholar
  55. 55.
    Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature (Lond) 2003;425:846–851.CrossRefGoogle Scholar
  56. 56.
    Pasca di Magliano M, Sekine S, Ermilov A, Ferris J, Dlugosz AA, Hebrok M. Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev 2006;20:3161–3173.PubMedCrossRefGoogle Scholar
  57. 57.
    Morton JP, Mongeau ME, Klimstra DS, Morris JP, Lee YC, Kawaguchi Y, et al. Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci USA 2007;104:5103–5108.PubMedCrossRefGoogle Scholar
  58. 58.
    Cohen MM Jr. The hedgehog signaling network. Am J Med Genet A 2003;123:5–28.CrossRefGoogle Scholar
  59. 59.
    Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 2007;67:2187–2196.PubMedCrossRefGoogle Scholar
  60. 60.
    Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature (Lond) 2000;406:1005–1009.CrossRefGoogle Scholar
  61. 61.
    Lipinski RJ, Hutson PR, Hannam PW, Nydza RJ, Washington IM, Moore RW, et al. Dose- and route-dependent teratogenicity, toxicity, and pharmacokinetic profiles of the Hedgehog signaling antagonist cyclopamine in the mouse. Toxicol Sci 2008;104:189–197.PubMedCrossRefGoogle Scholar
  62. 62.
    Kumar SK, Roy I, Anchoori RK, Fazli S, Maitra A, Beachy PA, et al. Targeted inhibition of hedgehog signaling by cyclopamine prodrugs for advanced prostate cancer. Bioorg Med Chem 2008;16:2764–2768.PubMedCrossRefGoogle Scholar
  63. 63.
    Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 2004;6:229–240.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2008

Authors and Affiliations

  • Toru Furukawa
    • 1
  1. 1.International Research and Educational Institute for Integrated Medical SciencesTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations