Journal of Gastroenterology

, Volume 42, Issue 9, pp 705–710

Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision

  • Tetsuya Nakamura
  • Kiichiro Tsuchiya
  • Mamoru Watanabe
Review

Abstract

Continuous renewal of the intestinal epithelium requires coordinated regulation to maintain the balance between proliferation and differentiation of the epithelial stem cells and immature progenitor cells. Canonical Wnt signaling has long been regarded as the signaling pathway playing a central role in this epithelial cell fate determination; however, recent studies have shown that Notch signaling is also indispensable for this process. Here, we review the current concepts of how the Wnt and Notch pathways control intestinal epithelial cell fate decisions, particularly focusing on their crosstalk at both tissue and cellular levels. As several features are shared between stem cell renewal and cancer cell renewal, comprehensive understanding of how the Wnt and Notch signaling pathways cooperate and integrate in the gut epithelium has significant implications for the development of novel therapeutic modalities for intestinal neoplasia.

Key words

intestinal epithelial cell Wnt Notch bHLH transcription factor Hath1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng, H, Leblond, CP 1974Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell typesAm J Anat14153761PubMedCrossRefGoogle Scholar
  2. 2.
    Bjerknes, M, Cheng, H 1999Clonal analysis of mouse intestinal epithelial progenitorsGastroenterology116714PubMedCrossRefGoogle Scholar
  3. 3.
    Wong, MH, Saam, JR, Stappenbeck, TS, Rexer, CH, Gordon, JI 2000Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissectionProc Natl Acad Sci USA97126016PubMedCrossRefGoogle Scholar
  4. 4.
    Marshman, E, Booth, C, Potten, CS 2002The intestinal epithelial stem cellBioessays24918PubMedCrossRefGoogle Scholar
  5. 5.
    Booth D, Potten CS. Protection against mucosal injury by growth factors and cytokines. J Natl Cancer Inst Monogr 2001:16–20Google Scholar
  6. 6.
    Podolsky, DK 1999Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defenseAm J Physiol277G4959PubMedGoogle Scholar
  7. 7.
    Kinzler, KW, Vogelstein, B 1996Lessons from hereditary colorectal cancerCell8715970PubMedCrossRefGoogle Scholar
  8. 8.
    Logan, CY, Nusse, R 2004The Wnt signaling pathway in development and diseaseAnnu Rev Cell Dev Biol20781810PubMedCrossRefGoogle Scholar
  9. 9.
    van de Wetering, M, Sancho, E, Verweij, C, de Lau, W, Oving, I, Hurlstone, A,  et al. 2002The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cellsCell11124150PubMedCrossRefGoogle Scholar
  10. 10.
    Korinek, V, Barker, N, Moerer, P, van Donselaar, E, Huls, G, Peters, PJ,  et al. 1998Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4Nat Genet1937983PubMedCrossRefGoogle Scholar
  11. 11.
    Pinto, D, Gregorieff, A, Begthel, H, Clevers, H 2003Canonical Wnt signals are essential for homeostasis of the intestinal epitheliumGenes Dev17170913PubMedCrossRefGoogle Scholar
  12. 12.
    Ireland, H, Kemp, R, Houghton, C, Howard, L, Clarke, AR, Sansom, OJ,  et al. 2004Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-cateninGastroenterology126123646PubMedCrossRefGoogle Scholar
  13. 13.
    Kuhnert, F, Davis, CR, Wang, HT, Chu, P, Lee, M, Yuan, J,  et al. 2004Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1Proc Natl Acad Sci USA10126671PubMedCrossRefGoogle Scholar
  14. 14.
    Su, LK, Kinzler, KW, Vogelstein, B, Preisinger, AC, Moser, AR, Luongo, C,  et al. 1992Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC geneScience25666870PubMedCrossRefGoogle Scholar
  15. 15.
    Sansom, OJ, Reed, KR, Hayes, AJ, Ireland, H, Brinkmann, H, Newton, IP,  et al. 2004Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migrationGenes Dev18138590PubMedCrossRefGoogle Scholar
  16. 16.
    Andreu, P, Colnot, S, Godard, C, Gad, S, Chafey, P, Niwa-Kawakita, M,  et al. 2005Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestineDevelopment132144351PubMedCrossRefGoogle Scholar
  17. 17.
    He, TC, Sparks, AB, Rago, C, Hermeking, H, Zawel, L, da Costa, LT,  et al. 1998Identification of c-MYC as a target of the APC pathwayScience281150912PubMedCrossRefGoogle Scholar
  18. 18.
    Sansom, OJ, Meniel, VS, Muncan, V, Phesse, TJ, Wilkins, JA, Reed, KR,  et al. 2007Myc deletion rescues Apc deficiency in the small intestineNature4466769PubMedCrossRefGoogle Scholar
  19. 19.
    Bettess, MD, Dubois, N, Murphy, MJ, Dubey, C, Roger, C, Robine, S,  et al. 2005c-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epitheliumMol Cell Biol25786878PubMedCrossRefGoogle Scholar
  20. 20.
    Muncan, V, Sansom, OJ, Tertoolen, L, Phesse, TJ, Begthel, H, Sancho, E,  et al. 2006Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-MycMol Cell Biol26841826PubMedCrossRefGoogle Scholar
  21. 21.
    Evers, BM, Ko, TC, Li, J, Thompson, EA 1996Cell cycle protein suppression and p21 induction in differentiating Caco-2 cellsAm J Physiol271G7227PubMedGoogle Scholar
  22. 22.
    Artavanis-Tsakonas, S, Rand, MD, Lake, RJ 1999Notch signaling: cell fate control and signal integration in developmentScience2847706PubMedCrossRefGoogle Scholar
  23. 23.
    De Strooper, B, Annaert, W, Cupers, P, Saftig, P, Craessaerts, K, Mumm, JS,  et al. 1999A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domainNature39851822PubMedCrossRefGoogle Scholar
  24. 24.
    Schroder, N, Gossler, A 2002Expression of Notch pathway components in fetal and adult mouse small intestineGene Expr Patterns224750PubMedCrossRefGoogle Scholar
  25. 25.
    Sander, GR, Powell, BC 2004Expression of notch receptors and ligands in the adult gutJ Histochem Cytochem5250916PubMedGoogle Scholar
  26. 26.
    Jensen, J, Pedersen, EE, Galante, P, Hald, J, Heller, RS, Ishibashi, M,  et al. 2000Control of endodermal endocrine development by Hes-1Nat Genet243644PubMedCrossRefGoogle Scholar
  27. 27.
    Sasai, Y, Kageyama, R, Tagawa, Y, Shigemoto, R, Nakanishi, S 1992Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of splitGenes Dev6262034PubMedCrossRefGoogle Scholar
  28. 28.
    Jarriault, S, Brou, C, Logeat, F, Schroeter, EH, Kopan, R, Israel, A 1995Signalling downstream of activated mammalian NotchNature3773558PubMedCrossRefGoogle Scholar
  29. 29.
    Yang, Q, Bermingham, NA, Finegold, MJ, Zoghbi, HY 2001Requirement of Math1 for secretory cell lineage commitment in the mouse intestineScience29421558PubMedCrossRefGoogle Scholar
  30. 30.
    Jenny, M, Uhl, C, Roche, C, Duluc, I, Guillermin, V, Guillemot, F,  et al. 2002Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epitheliumEMBO J21633847PubMedCrossRefGoogle Scholar
  31. 31.
    Naya, FJ, Huang, HP, Qiu, Y, Mutoh, H, DeMayo, FJ, Leiter, AB,  et al. 1997Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient miceGenes Dev11232334PubMedGoogle Scholar
  32. 32.
    Katz, JP, Perreault, N, Goldstein, BG, Lee, CS, Labosky, PA, Yang, VW,  et al. 2002The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colonDevelopment129261928PubMedGoogle Scholar
  33. 33.
    Shroyer, NF, Wallis, D, Venken, KJ, Bellen, HJ, Zoghbi, HY 2005Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiationGenes Dev1924127PubMedCrossRefGoogle Scholar
  34. 34.
    Schonhoff, SE, Giel-Moloney, M, Leiter, AB 2004Minireview: development and differentiation of gut endocrine cellsEndocrinology145263944PubMedCrossRefGoogle Scholar
  35. 35.
    van Es, JH, van Gijn, ME, Riccio, O, van den Born, M, Vooijs, M, Begthel, H,  et al. 2005Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cellsNature43595963PubMedCrossRefGoogle Scholar
  36. 36.
    Fre, S, Huyghe, M, Mourikis, P, Robine, S, Louvard, D, Artavanis-Tsakonas, S 2005Notch signals control the fate of immature progenitor cells in the intestineNature4359648PubMedCrossRefGoogle Scholar
  37. 37.
    Crosnier, C, Stamataki, D, Lewis, J 2006Organizing cell renewal in the intestine: stem cells, signals and combinatorial controlNat Rev Genet734959PubMedCrossRefGoogle Scholar
  38. 38.
    Leow, CC, Romero, MS, Ross, S, Polakis, P, Gao, WQ 2004Hath1, down-regulated in colon adenocarcinomas, inhibits proliferation and tumorigenesis of colon cancer cellsCancer Res6460507PubMedCrossRefGoogle Scholar
  39. 39.
    Sarmento, LM, Huang, H, Limon, A, Gordon, W, Fernandes, J, Tavares, MJ,  et al. 2005Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradationJ Exp Med20215768PubMedCrossRefGoogle Scholar
  40. 40.
    Tsuchiya, K, Nakamura, T, Okamoto, R, Kanai, T, Watanabe, M 2007Reciprocal targeting of Hath1 and beta-catenin by Wnt glycogen synthase kinase 3beta in human colon cancerGastroenterology13220820PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2007

Authors and Affiliations

  • Tetsuya Nakamura
    • 1
  • Kiichiro Tsuchiya
    • 2
  • Mamoru Watanabe
    • 2
  1. 1.Department of Advanced Therapeutics for GI diseases, Graduate SchoolTokyo Medical and Dental UniversityTokyoJapan
  2. 2.Department of Gastroenterology and Hepatology, Graduate SchoolTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations