Molecular genetics of pancreatic intraepithelial neoplasia

  • Georg Feldmann
  • Robert Beaty
  • Ralph H. Hruban
  • Anirban Maitra
Topics: Current understanding of precursors to pancreatic cancer



Recent evidence suggests that noninvasive precursor lesions, classified as pancreatic intraepithelial neoplasia (PanIN), can progress to invasive pancreatic cancer. This review will discuss the major genetic alterations in PanIN lesions.


A comprehensive review of the literature was performed in order to find studies on the molecular profile of human PanIN lesions. In addition, recent publications on genetically engineered mouse models of preinvasive neoplasia and pancreatic cancers were reviewed.


PanINs demonstrate abnormalities at the genomic (DNA), transcriptomic (RNA), and proteomic levels, and there is a progressive accumulation of molecular alterations that accompany the histological progression from low-grade PanIN-1A to high-grade PanIN-3 lesions. Molecular changes in PanINs can be classified as “early” (KRAS2 mutations, telomere shortening, p21WAF1/CIP1 up-regulation, etc.), “intermediate” (cyclin D1 up-regulation, expression of proliferation antigens, etc.), or “late” (BRCA2 and TP53 mutations, DPC4/SMAD4/MADH4 inactivation, etc.). All the genetic changes observed in PanINs are also found in invasive ductal adenocarcinomas, where they usually occur at a higher frequency. Genetically engineered mice expressing mutant Kras in the pancreas, with or without additional genetic alterations, provide a unique in vivo platform to study the pancreatic cancer progression model.


Molecular studies have been instrumental in establishing that PanIN lesions are the noninvasive precursors for invasive ductal adenocarcinomas. The availability of molecular date provides the basis for designing rational early detection strategies and therapeutic intervention trials before pancreatic neoplasms invade, with the intention of alleviating the dismal prognosis associated with this disease.


Pancreatic Cancer Prostate Stem Cell Antigen Familial Pancreatic Cancer Pancreatic Intraepithelial Neoplasia PanIN Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takaori, K, Hruban, RH, Maitra, A, Tanigawa, N 2004Pancreatic intraepithelial neoplasiaPancreas2825762PubMedCrossRefGoogle Scholar
  2. 2.
    Yeo, TP, Hruban, RH, Leach, SD, Wilentz, RE, Sohn, TA, Kern, SE,  et al. 2002Pancreatic cancerCurr Probl Cancer26176275PubMedCrossRefGoogle Scholar
  3. 3.
    Petersen, GM, Hruban, RH 2003Familial pancreatic cancer: where are we in 2003?J Natl Cancer Inst951801PubMedGoogle Scholar
  4. 4.
    Srinivas, PR, Kramer, BS, Srivastava, S 2001Trends in biomarker research for cancer detectionLancet Oncol2698704PubMedCrossRefGoogle Scholar
  5. 5.
    Vogelstein, B, Kinzler, KW 1993The multistep nature of cancerTrends Genet913841PubMedCrossRefGoogle Scholar
  6. 6.
    Vogel, VG, Costantino, JP, Wickerham, DL, Cronin, WM 2003National surgical adjuvant breast and bowel project update: prevention trials and endocrine therapy of ductal carcinoma in situClin Cancer Res9495S501SPubMedGoogle Scholar
  7. 7.
    Hulst, SPL 1905Zur kenntnis der genese des adenokarzinoms und karzinoms des pankreasVirchows Arch180288316CrossRefGoogle Scholar
  8. 8.
    Cubilla, AL, Fitzgerald, PJ 1976Morphological lesions associated with human primary invasive nonendocrine pancreas cancerCancer Res3626908PubMedGoogle Scholar
  9. 9.
    Klimstra, DS, Longnecker, DS 1994K-ras mutations in pancreatic ductal proliferative lesionsAm J Pathol145154750PubMedGoogle Scholar
  10. 10.
    Kozuka, S, Sassa, R, Taki, T, Masamoto, K, Nagasawa, S, Saga, S,  et al. 1979Relation of pancreatic duct hyperplasia to carcinomaCancer43141828PubMedCrossRefGoogle Scholar
  11. 11.
    Takaori, K, Kobashi, Y, Matsusue, S, Matsui, K, Yamamoto, T 2003Clinicopathological features of pancreatic intraepithelial neoplasias and their relationship to intraductal papillary–mucinous tumorsJ Hepatobiliary Pancreat Surg1012536PubMedCrossRefGoogle Scholar
  12. 12.
    Brat, DJ, Lillemoe, KD, Yeo, CJ, Warfield, PB, Hruban, RH 1998Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreasAm J Surg Pathol221639PubMedCrossRefGoogle Scholar
  13. 13.
    Hruban, RH, Adsay, NV, Albores-Saavedra, J, Compton, C, Garrett, ES, Goodman, SN,  et al. 2001Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesionsAm J Surg Pathol2557986PubMedCrossRefGoogle Scholar
  14. 14.
    Hruban, RH, Takaori, K, Klimstra, DS, Adsay, NV, Albores-Saavedra, J, Biankin, AV,  et al. 2004An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasmsAm J Surg Pathol2897787PubMedCrossRefGoogle Scholar
  15. 15.
    Maitra, A, Fukushima, N, Takaori, K, Hruban, RH 2005Precursors to invasive pancreatic cancerAdv Anat Pathol128191PubMedCrossRefGoogle Scholar
  16. 16.
    Vogelstein, B, Kinzler, KW 2004Cancer genes and the pathways they controlNat Med1078999PubMedCrossRefGoogle Scholar
  17. 17.
    Caldas, C, Kern, SE 1995K-ras mutation and pancreatic adenocarcinomaInt J Pancreatol1816PubMedGoogle Scholar
  18. 18.
    Hingorani, SR, Tuveson, DA 2003Ras redux: rethinking how and where Ras actsCurr Opin Genet Dev13613PubMedCrossRefGoogle Scholar
  19. 19.
    Lohr, M, Kloppel, G, Maisonneuve, P, Lowenfels, AB, Luttges, J 2005Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysisNeoplasia71723PubMedCrossRefGoogle Scholar
  20. 20.
    Luttges, J, Diederichs, A, Menke, MA, Vogel, I, Kremer, B, Kloppel, G 2000Ductal lesions in patients with chronic pancreatitis show K-ras mutations in a frequency similar to that in the normal pancreas and lack unclear immunoreactivity for p53Cancer882495504PubMedCrossRefGoogle Scholar
  21. 21.
    Laghi, L, Orbetegli, O, Bianchi, P, Zerbi, A, Di Carlo, V, Boland, CR,  et al. 2002Common occurrence of multiple K-RAS mutations in pancreatic cancers with associated precursor lesions and in biliary cancersOncogene2143016PubMedCrossRefGoogle Scholar
  22. 22.
    Qian, J, Niu, J, Li, M, Chiao, PJ, Tsao, MS 2005In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesisCancer Res65504553PubMedCrossRefGoogle Scholar
  23. 23.
    Hingorani, SR, Petricoin, EF, Maitra, A, Rajapakse, V, King, C, Jacobetz, MA,  et al. 2003Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouseCancer Cell443750PubMedCrossRefGoogle Scholar
  24. 24.
    Aguirre, AJ, Bardeesy, N, Sinha, M, Lopez, L, Tuveson, DA, Horner, J,  et al. 2003Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinomaGenes Dev17311226PubMedCrossRefGoogle Scholar
  25. 25.
    Hingorani, SR, Wang, L, Multani, AS, Combs, C, Deramaudt, TB, Hruban, RH,  et al. 2005Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in miceCancer Cell746983PubMedCrossRefGoogle Scholar
  26. 26.
    Sherr, CJ 2000Cell cycle control and cancerHarvey Lect967392PubMedGoogle Scholar
  27. 27.
    Caldas, C, Hahn, SA, Da Costa, LT, Redston, MS, Schutte, M, Seymour, AB,  et al. 1994Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinomaNat Genet82732PubMedCrossRefGoogle Scholar
  28. 28.
    Schutte, M, Hruban, RH, Geradts, J, Maynard, R, Hilgers, W, Rabindran, SK,  et al. 1997Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomasCancer Res57312630PubMedGoogle Scholar
  29. 29.
    Ueki, T, Toyota, M, Sohn, T, Yeo, CJ, Issa, JP, Hruban, RH,  et al. 2000Hypermethylation of multiple genes in pancreatic adenocarcinomaCancer Res6018359PubMedGoogle Scholar
  30. 30.
    Wilentz RE, Geradts J, Maynard R, Offerhaus GJ, Kang M, Goggins M, et al. Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res 58:4740–4Google Scholar
  31. 31.
    Rosty, C, Geradts, J, Sato, N, Wilentz, RE, Roberts, H, Sohn, T,  et al. 2003p16 inactivation in pancreatic intraepithelial neoplasias (PanINs) arising in patients with chronic pancreatitisAm J Surg Pathol271495501PubMedCrossRefGoogle Scholar
  32. 32.
    Hustinx SR, Hruban RH, Leoni LM, Iacobuzio-Donahue C, Cameron JL, Yeo CJ, et al. Homozygous deletion of the MTAP gene in invasive adenocarcinoma of the pancreas and in periampullary cancer: a potential new target for therapy. Cancer Biol Ther 2005;4Google Scholar
  33. 33.
    Hustinx, SR, Leoni, LM, Yeo, CJ, Brown, PN, Goggins, M, Kern, SE,  et al. 2005Concordant loss of MTAP and p16/CDKN2A expression in pancreatic intraepithelial neoplasia: evidence of homozygous deletion in a noninvasive precursor lesionMod Pathol1895963PubMedCrossRefGoogle Scholar
  34. 34.
    Redston, MS, Caldas, C, Seymour, AB, Hruban, RH, Da Costa, L, Yeo, CJ,  et al. 1994p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletionsCancer Res54302533PubMedGoogle Scholar
  35. 35.
    Baas, IO, Mulder, JW, Offerhaus, GJ, Vogelstein, B, Hamilton, SR 1994An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasmsJ Pathol172512PubMedCrossRefGoogle Scholar
  36. 36.
    Maitra, A, Adsay, NV, Argani, P, Iacobuzio-Donahue, C, De Marzo, A, Cameron, JL,  et al. 2003Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarrayMod Pathol1690212PubMedCrossRefGoogle Scholar
  37. 37.
    Hahn, SA, Schutte, M, Hoque, AT, Moskaluk, CA, da Costa, LT, Rozenblum, E,  et al. 1996DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1Science2713503PubMedCrossRefGoogle Scholar
  38. 38.
    Wilentz, RE, Iacobuzio-Donahue, CA, Argani, P, McCarthy, DM, Parsons, JL, Yeo, GJ,  et al. 2000Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progressionCancer Res6020026PubMedGoogle Scholar
  39. 39.
    D'Andrea, AD, Grompe, M 2003The Fanconi anaemia/BRCA pathwayNat Rev Cancer32334PubMedCrossRefGoogle Scholar
  40. 40.
    van der Heijden, MS, Brody, JR, Gallmeier, E, Cunningham, SC, Dezentje, DA, Shen, D,  et al. 2004Functional defects in the Fanconi anemia pathway in pancreatic cancer cellsAm J Pathol1656517PubMedGoogle Scholar
  41. 41.
    Klein, AP, Hruban, RH, Brune, KA, Petersen, GM, Goggins, M 2001Familial pancreatic cancerCancer J726673PubMedGoogle Scholar
  42. 42.
    Goggins, M, Hruban, RH, Kern, SE 2000BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implicationsAm J Pathol156176771PubMedGoogle Scholar
  43. 43.
    Griffin, GA, Hruban, RH, Morsberger, LA, Ellingham, T, Long, PP, Jaffee, EM,  et al. 1995Consistent chromosome abnormalities in adenocarcinoma of the pancreasCancer Res5523949PubMedGoogle Scholar
  44. 44.
    Iacobuzio-Donahue, CA, van der Heijden, MS, Baumgartner, MR, Troup, WJ, Romm, JM, Doheny, K,  et al. 2004Large-scale allelotype of pancreaticobiliary carcinoma provides quantitative estimates of genome-wide allelic lossCancer Res648715PubMedCrossRefGoogle Scholar
  45. 45.
    Luttges, J, Galehdari, H, Brocker, V, Schwarte-Waldhoff, I, Henne-Bruns, D, Kloppel, G,  et al. 2001Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesisAm J Pathol158167783PubMedGoogle Scholar
  46. 46.
    Yamano, M, Fujii, H, Takagaki, T, Kadowaki, N, Watanabe, H, Shirai, T 2000Genetic progression and divergence in pancreatic carcinomaAm J Pathol156212333PubMedGoogle Scholar
  47. 47.
    van Heek, NT, Meeker, AK, Kern, SE, Yeo, CJ, Lillemoe, KD, Cameron, JL,  et al. 2002Telomere shortening is nearly universal in pancreatic intraepithelial neoplasiaAm J Pathol16115417PubMedGoogle Scholar
  48. 48.
    Gisselsson, D 2003Chromosome instability in cancer: how, when, and why?Adv Cancer Res87129PubMedCrossRefGoogle Scholar
  49. 49.
    Feinberg, AP 2004The epigenetics of cancer etiologySemin Cancer Biol1442732PubMedCrossRefGoogle Scholar
  50. 50.
    Baylin, SB, Herman, JG 2000DNA hypermethylation in tumorigenesis: epigenetics joins geneticsTrends Genet1616874PubMedCrossRefGoogle Scholar
  51. 51.
    Fukushima, N, Sato, N, Ueki, T, Rosty, C, Walter, KM, Wilentz, RE,  et al. 2002Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinomaAm J Pathol160157381PubMedGoogle Scholar
  52. 52.
    Jansen, M, Fukushima, N, Rosty, C, Walter, K, Altink, R, Heek, TV,  et al. 2002Aberrant methylation of the 5′-CpG island of TSLC1 is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNsCancer Biol Ther12936PubMedGoogle Scholar
  53. 53.
    Goggins, M 2005Molecular markers of early pancreatic cancerJ Clin Oncol23452431PubMedCrossRefGoogle Scholar
  54. 54.
    Klein, WM, Hruban, RH, Klein-Szanto, AJ, Wilentz, RE 2002Direct correlation between proliferative activity and dysplasia in pancreatic intraepithelial neoplasia (PanIN): additional evidence for a recently proposed model of progressionMod Pathol154417PubMedCrossRefGoogle Scholar
  55. 55.
    Biankin, AV, Kench, JG, Morey, AL, Lee, CS, Biankin, SA, Head, DR,  et al. 2001Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasiaCancer Res6188307PubMedGoogle Scholar
  56. 56.
    Gansauge, S, Gansauge, F, Ramadani, M, Stobbe, H, Rau, B, Harada, N,  et al. 1997Overexpression of cyclin D1 in human pancreatic carcinoma is associated with poor prognosisCancer Res5716347PubMedGoogle Scholar
  57. 57.
    Miyamoto, V, Maitra, A, Ghosh, B, Zechner, U, Argani, P, Iacobuzio-Donahue, CA,  et al. 2003Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesisCancer Cell356576PubMedCrossRefGoogle Scholar
  58. 58.
    Berman, DM, Karhadkar, SS, Maitra, A, Montes De Oca, R, Gerstenblith, MR, Briggs, K,  et al. 2003Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumoursNature42584651PubMedCrossRefGoogle Scholar
  59. 59.
    Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Castillo CF, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003, doi:10.1038/nature02009Google Scholar
  60. 60.
    Prasad, NB, Biankin, AV, Fukushima, N, Maitra, A, Dhara, S, Elkahloun, AG,  et al. 2005Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cellsCancer Res65161926PubMedCrossRefGoogle Scholar
  61. 61.
    Taipale, J, Beachy, PA 2001The Hedgehog and Wnt signalling pathways in cancerNature41134954PubMedCrossRefGoogle Scholar
  62. 62.
    Abraham, SC, Wu, TT, Hruban, RH, Lee, JH, Yeo, CJ, Conlon, K,  et al. 2002Genetic and immunohistochemical analysis of pancreatic acinar cell carcinoma: frequent allelic loss on chromosome 11p and alterations in the APC/beat-catenin pathwayAm J Pathol16095362PubMedGoogle Scholar
  63. 63.
    Abraham, SC, Klimstra, DS, Wilentz, RE, Yeo, CJ, Conlon, K, Brennan, M,  et al. 2002Solid pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutationsAm J Pathol16013619PubMedGoogle Scholar
  64. 64.
    Abraham, SC, Wu, TT, Klimstra, DS, Finn, LS, Lee, JH, Yeo, CJ,  et al. 2001Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas: frequent alterations in the APC/beta-catenin pathway and chromosome 11pAm J Pathol159161927PubMedGoogle Scholar
  65. 65.
    Tucker, ON, Dannenberg, AJ, Yang, EK, Zhang, F, Teng, L, Daly, JM,  et al. 1999Cyclooxygenase-2 expression is up-regulated in human pancreatic cancerCancer Res5998790PubMedGoogle Scholar
  66. 66.
    KK, Wu 2005Control of cyclooxygenase-2 transcriptional activation by pro-inflammatory mediatorsProstaglandins Leukot Essent Fatty Acids728993CrossRefGoogle Scholar
  67. 67.
    Zha, S, Yegnasubramanian, V, Nelson, WG, Isaacs, WB, De Marzo, AM 2004cyclooxygenases in cancer: progress and perspectiveCancer Lett215120PubMedCrossRefGoogle Scholar
  68. 68.
    Maitra, A, Ashfaq, R, Gunn, CR, Rahman, A, Yeo, CJ, Sohn, TA,  et al. 2002Cyclooxygenase-2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imagingAm J Clin Pathol118194201PubMedCrossRefGoogle Scholar
  69. 69.
    Albazaz, R, Verbeke, CS, Rahman, SH, McMahon, MJ 2005Cyclooxygenase-2 expression associated with severity of PanIN lesions: a possible link between chronic pancreatitis and pancreatic cancerPancreatology53619PubMedCrossRefGoogle Scholar
  70. 70.
    Sclabas, GM, Uwagawa, T, Schmidt, C, Hess, KR, Evans, DB, Abbruzzese, JL,  et al. 2005Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirinCancer103248590PubMedCrossRefGoogle Scholar
  71. 71.
    Shiomi, T, Okada, Y 2003MT1-MMP and MMP-7 in invasion and metastasis of human cancersCancer Metastasis Rev2214552PubMedCrossRefGoogle Scholar
  72. 72.
    Vargo-Gogola, T, Fingleton, B, Crawford, HC, Matrisian, LM 2002Matrilysin (matrix metalloproteinase-7) selects for apoptosis-resistant mammary cells in vivoCancer Res62555963PubMedGoogle Scholar
  73. 73.
    Crawford, HC, Scoggins, CR, Washington, MK, Matrisian, LM, Leach, SD 2002Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreasJ Clin Invest109143744PubMedCrossRefGoogle Scholar
  74. 74.
    Argani, P, Rosty, C, Reiter, RE, Wilentz, RE, Murugesan, SR, Leach, SD,  et al. 2001Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinomaCancer Res6143204PubMedGoogle Scholar
  75. 75.
    Iacobuzio-Donahue, CA, Maitra, A, Shen-Ong, GL, van Heek, T, Ashfaq, R, Meyer, R,  et al. 2002Discovery of novel tumor markers of pancreatic cancer using global gene expression technologyAm J Pathol160123949PubMedGoogle Scholar
  76. 76.
    Iacobuzio-Donahue, CA, Maitra, A, Olsen, M, Lowe, AW, van Heek, NT, Rosty, C,  et al. 2003Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarraysAm J Pathol162115162PubMedGoogle Scholar
  77. 77.
    Iacobuzio-Donahue, CA, Ashfaq, R, Maitra, A, Adsay, NV, Shen-Ong, GL, Berg, K,  et al. 2003Hightly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparision of the transcription profiles obtained from three major technologiesCancer Res63861422PubMedGoogle Scholar
  78. 78.
    Han, H, Bearss, DJ, Browne, LW, Calaluce, R, Nagle, RB, Von Hoff, DD 2002Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarrayCancer Res6228906PubMedGoogle Scholar
  79. 79.
    Logsdon, CD, Simeone, DM, Binkley, C, Arumugam, T, Greenson, JK, Giordano, TJ,  et al. 2003Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancerCancer Res63246957Google Scholar
  80. 80.
    Argani, P, Iacobuzio-Donahue, C, Ryu, B, Rosty, C, Goggins, M, Wilentz, RE,  et al. 2001Mesothelin is overexpressed in the vast majority of ductal adenocarinomas of the pancreas: identification of a new pancreatic cancer market by serial analysis of gene expression (SAGE)Clin Cancer Res738628PubMedGoogle Scholar
  81. 81.
    Offield, MF, Jetton, TL, Labosky, PA, Ray, M, Stein, RW, Magnuson, MA,  et al. 1996PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenumDevelopment12298395PubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2007

Authors and Affiliations

  • Georg Feldmann
    • 1
  • Robert Beaty
    • 1
  • Ralph H. Hruban
    • 1
    • 2
  • Anirban Maitra
    • 1
    • 2
    • 3
  1. 1.Department of PathologyThe Sol Goldman Pancreatic Cancer Research CenterBaltimoreUSA
  2. 2.Department of OncologyThe Sol Goldman Pancreatic Cancer Research CenterBaltimoreUSA
  3. 3.McKusick–Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations