Advertisement

Finite pattern of Barrovian metamorphic zones: interplay between thermal reequilibration and post-peak deformation during continental collision—insights from the Svratka dome (Bohemian Massif)

  • Pavla ŠtípskáEmail author
  • Karel Schulmann
  • Martin Racek
  • Jean Marc Lardeaux
  • Bradley R. Hacker
  • Andrew R. C. Kylander-Clark
  • Robert Holder
  • Monika Košuličová
Original Paper

Abstract

The Barrovian inverted metamorphism of the Svratka dome developed within two nappes derived from the Brunia continent that was thrust beneath the Moldanubian orogenic root. The metamorphism increases from biotite–chlorite zone in the basement to very closely spaced staurolite, kyanite and sillimanite zones at the top of the nappe pile. The sequence of mineral growth, chemical zoning of garnet, and pseudosection modelling indicate prograde paths from 4.5 kbar/510 °C to 5.5 kbar/540 °C in the garnet zone, from 6 kbar/530 °C to 7 kbar/600 °C in the staurolite zone, and from 3.5 kbar/510 °C to 8.5 kbar/650 °C in the kyanite zone. The age of monazite inclusions in garnet and staurolite is interpreted to reflect prograde metamorphism at 338 ± 7 Ma and 336 ± 7 Ma, respectively. An older matrix monazite crystal is interpreted as dating prograde crystallization at 345 ± 7 Ma, whereas a younger monazite group records recrystallization at/or down to 334 ± 7 Ma. While these petrological and geochronological data are consistent with data from an inverted metamorphic sequence of the southern Thaya dome, the spacing and distribution of metamorphic zones, nappe thicknesses, and late structures are different in the two domes. An antiformal stack of imbricated basement sheets and the extreme attenuation of metamorphic isograds at the top of the nappe pile in the Svratka dome are explained by a relatively cold overthrusting Moldanubian domain, formed mainly of middle orogenic crust. The homogeneous thickening of the hinterland-dipping basement duplexes and the regular spacing of metamorphic isograds in the Thaya dome are explained by a hot overriding Moldanubian domain, which in this region has a high proportion of exhumed lower orogenic crust and formed a hot mid-crustal channel.

Keywords

Bohemian Massif Inverted Barrovian metamorphism Monazite dating Imbricated antiformal stack Pseudosection modelling Channel flow 

Notes

Acknowledgements

This work was supported by the Czech Science Foundation (grant number 19-25035S). B.R.H. acknowledges National Science Foundation grant EAR-1551054. M. K. benefited from financial support of the French embassy during her stays at the Strasbourg University, France. R. Čopjaková and R. Škoda from the Institute of Geosciences, Masaryk University, Brno are thanked for operating the microprobe during monazite mapping. We thank A. Willner and an anonymous reviewer for constructive comments and P. Hasalová for her editorial work.

Supplementary material

531_2019_1788_MOESM1_ESM.xls (166 kb)
Supplementary material 1 (XLS 166 kb)

References

  1. Aleinikoff JN, Schenck WS, Plank MO, Srogi LA, Fanning CM, Kamo SL, Bosbyshell H (2006) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Bull Geol Soc Am 118:39–64.  https://doi.org/10.1130/B25659.1 CrossRefGoogle Scholar
  2. Arita K (1983) Origin of the inverted metamorphism of the lower Himalayas, Central Nepal. Tectonophysics 95:43–60.  https://doi.org/10.1016/0040-1951(83)90258-5 CrossRefGoogle Scholar
  3. Barcheck CG, Wiens DA, van Keken PE, Hacker BR (2012) The relationship of intermediate- and deep-focus seismicity to the hydration and dehydration of subducting slabs. Earth Plan Sci Lett 349–350:153–160.  https://doi.org/10.1016/j.epsl.2012.06.055 CrossRefGoogle Scholar
  4. Bea F, Montero P (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63:1133–1153.  https://doi.org/10.1016/S0016-7037(98),00292-0 CrossRefGoogle Scholar
  5. Boyer SE, Elliott D (1982) Thrust systems. Am Asso Petrol Geol Bull 66:1196–1230Google Scholar
  6. Broussolle A, Štípská P, Lehmann J, Schulmann K, Hacker BR, Holder R, Kylander-Clark ARC, Hanžl P, Racek M, Hasalová P, Lexa O, Hrdličková K, Buriánek D (2015) P-T–t–D record of crustal-scale horizontal flow and magma-assisted doming in the SW Mongolian Altai. J Metamorph Geol 33:359–383.  https://doi.org/10.1111/jmg.12124 CrossRefGoogle Scholar
  7. Brunel M, Kienast JR (1986) Etude petro-structurale des chevauchements ductiles himalayens sur la transversal de l’Everest-Makalu (Nepal oriental). 23:1117–1137.  https://doi.org/10.1139/e86-111 CrossRefGoogle Scholar
  8. Burg JP, Leyreloup A, Marchand J, Matte P (1984) Inverted metamorphic zonation and large-scale thrusting in the Variscan Belt: an example in the French Massif Central, pp 47–61Google Scholar
  9. Burg JP, Delor CP, Leyreloup AF, Romney F (1989) Inverted metamorphic zonation and Variscan thrust tectonics in the Rouergue area (Massif Central, France): P–T–t record from mineral to regional scale. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of Metamorphic Belts, vol 43. Geological Society Special Publication. pp 423–439CrossRefGoogle Scholar
  10. Buriánek D, Hrdličková K, Hanžl P (2009) Geological position and origin of augen gneisses from the Polička Unit, eastern Bohemian Massif. J Geosci 54:201–219.  https://doi.org/10.3190/jgeosci.043 CrossRefGoogle Scholar
  11. Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20:683–696.  https://doi.org/10.1046/j.1525-1314.2002.00395.x CrossRefGoogle Scholar
  12. Compston W, Williams IS, Kirschvink JL, Zhang Z, Ma G (1992) Zircon U–Pb ages for the early Cambrian time-scale. J Geol Soc 149:171–184.  https://doi.org/10.1144/gsjgs.149.2.0171 CrossRefGoogle Scholar
  13. Dallmeyer D, Neubauer F, Höck V (1992) 40Ar/39Ar mineral age controls on the chronology of late- Paleozoic tectonothermal activity in the southeastern Bohemian Massif. Austria (Moldanubian and Moravosilesian zone). 210:135–153Google Scholar
  14. Demay A (1946) Sur la nappe anté-stéphanienne de la Margeride dans la région médiane du Masisf central. C R Acad Sci Paris D 222:1119–1121Google Scholar
  15. Dudek A (1980) The crystalline basement block of the outher Carpathians in Moravia: Brunovistulicum. Rozpr. Cs. Akad. Ved, R. mat. prir. ved, Praha 90:1–85Google Scholar
  16. Edel JB, Schulmann K, Holub FV (2003) Anticlockwise and clockwise rotations of the Eastern Variscides accommodated by dextral lithospheric wrenching: palaeomagnetic and structural evidence. J Geol Soc 160:209–218.  https://doi.org/10.1144/0016-764902-035 CrossRefGoogle Scholar
  17. England PC, Richardson SW (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J Geol Soc 134:201–213.  https://doi.org/10.1144/gsjgs.134.2.0201 CrossRefGoogle Scholar
  18. England PC, Thompson AB (1984) Pressure temperature time paths of regional metamorphism. 1. Heat-transfer during the evolution of regions of thickened continental-crust. J Petrol 25:894–928CrossRefGoogle Scholar
  19. England P, Le Fort P, Molnar P, Pecher A (1992) Heat sources for tertiary metamorphism and anatexis in the Annapurna-Manaslu region central Nepal. J Geophys Res Solid Earth 97:2107–2128.  https://doi.org/10.1029/91JB02272 CrossRefGoogle Scholar
  20. Fediuková E, Fišera M, Cháb J, Kopečný V, Opletal M, Rybka R (1985) Garnets of the pre-Devonian rocks in the eastern part of the Hrubý Jeseník Mts. (North Moravia, Czechoslovakia). Acta Univ Carol Geol 3:197–234Google Scholar
  21. Finger F, Tichomirowa M, Pin C, Hanzl P (2000) Relics of an early-Panafrican metabasite-metarhyolite formation in the Brno Massif, Moravia, Czech Republic. Int J Earth Sci 89:328–335.  https://doi.org/10.1007/s005310000084 CrossRefGoogle Scholar
  22. Foster G, Kinny P, Vance D, Prince C, Harris N (2000) The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth Planet Sci Lett 181:327–340.  https://doi.org/10.1016/S0012-821X(00),00212-0 CrossRefGoogle Scholar
  23. Franěk J, Schulmann K, Lexa O, Tomek C, Edel JB (2011) Model of syn-convergent extrusion of orogenic lower crust in the core of the Variscan belt: implications for exhumation of high-pressure rocks in large hot orogens. J Metamorph Geol 29:53–78.  https://doi.org/10.1111/j.1525-1314.2010.00903.x CrossRefGoogle Scholar
  24. Friedl G, Finger F, Paquette JL, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. Int J Earth Sci 93:802–823.  https://doi.org/10.1007/s00531-004-0420-9 CrossRefGoogle Scholar
  25. Fritz H (1996) Geodynamic and tectonic evolution of the southeastern Bohemian Massif: the Thaya section (Austria). Mineral Petrol 58:253–278CrossRefGoogle Scholar
  26. Fritz H, Dallmeyer RD, Neubauer F (1996) Thick-skinned versus thin-skinned thrusting: rheology controlled thrust propagation in the Variscan collisional belt (The southeastern Bohemian Massif, Czech Republic—Austria). Tectonics 15:1389–1413.  https://doi.org/10.1029/96TC01098 CrossRefGoogle Scholar
  27. Gasser D, Bruand E, Rubatto D, Stüwe K (2012) The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: an example from the Chugach Metamorphic Complex, southern Alaska. Lithos 134–135:108–122.  https://doi.org/10.1016/j.lithos.2011.12.003 CrossRefGoogle Scholar
  28. Graham CM, England PC (1976) Thermal regimes and regional metamorphism in vicinity of overthrust faults—an example of shear heating and inverted metamorphic zonation from Southern-California. Earth Planet Sci Lett 31:142–152CrossRefGoogle Scholar
  29. Grujic D, Casey M, Davidson C, Hollister LS, Kündig R, Pavlis T, Schmid S (1996) Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260:21–43CrossRefGoogle Scholar
  30. Guillot S, Allemand P (2002) Two-dimensional thermal modelling of the early tectonometamorphic evolution in Central Himalaya. J Geodyn 34:77–98.  https://doi.org/10.1016/S0264-3707(02)00016-9 CrossRefGoogle Scholar
  31. Hacker B, Kylander-Clark A, Holder R (2019) REE partitioning between monazite and garnet: implications for petrochronology. J Metamorph Geol 37:227–237.  https://doi.org/10.1111/jmg.12458 CrossRefGoogle Scholar
  32. Harrison TM, Grove M, Lovera OM, Catlos EJ (1998) A model for the origin of Himalayan anatexis and inverted metamorphism. J Geophys Res B Solid Earth 103:27017–27032CrossRefGoogle Scholar
  33. Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol 21:833–852.  https://doi.org/10.1046/j.1525-1314.2003.00484.x CrossRefGoogle Scholar
  34. Höck V (1975) Mineralzonen in Metapeliten und Metapsammiten der Moravischen Zone in Niederoesterreich. 66–67:49–60Google Scholar
  35. Höck V, Marschallinger R, Topa D (1990) Granat-biotit-geothermometrie in metapeliten der Moravischen Zone in Osterreich. Acta Univ Carol Geol 3:149–167Google Scholar
  36. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343CrossRefGoogle Scholar
  37. Holland T, Powell R (2003) Activity-compositions relations for phases in petrological calculations: an asymetric multicomponent formulation. Contrib Mineral Petrol 145:492–501.  https://doi.org/10.1007/s00410-003-0464-z CrossRefGoogle Scholar
  38. Hubbard MS (1996) Ductile shear as a cause of inverted metamorphism: example from the Nepal Himalaya. 104:493–499.  https://doi.org/10.1086/629842 CrossRefGoogle Scholar
  39. Jamieson RA, Beaumont C, Hamilton J, Fullsack P (1996) Tectonic assembly of inverted metamorphic sequences. Geology 24:839–842.  https://doi.org/10.1130/0091-7613(1996)024%3c0839:TAOIMS%3e2.3.CO;2 CrossRefGoogle Scholar
  40. Jamieson RA, Beaumont C, Nguyen MH, Lee B (2002) Interaction of metamorphism, deformation and exhumation in large convergent orogens. J Metamorph Geol 20:9–24.  https://doi.org/10.1046/j.0263-4929.2001.00357.x CrossRefGoogle Scholar
  41. Jiang Y, Štípská P, Sun M, Schulmann K, Zhang J, Wu Q, Long X, Yuan C, Racek M, Zhao G, Xiao W (2015) Juxtaposition of barrovian and migmatite domains in the chinese altai: a result of crustal thickening followed by doming of partially molten lower crust. J Metamorph Geol 33:45–70.  https://doi.org/10.1111/jmg.12110 CrossRefGoogle Scholar
  42. Johnson MRW (2005) Structural settings for the contrary metamorphic zonal sequences in the internal and external zones of the Himalaya. J Asian Earth Sci 25:695–706.  https://doi.org/10.1016/j.jseaes.2004.04.010 CrossRefGoogle Scholar
  43. Jung J, Roques M (1936) Les zones d'isométamorphisme dans le terrain cristallophyllien du Massif Central français. Rev Sc Nat Auvergne Tome I Fasc 4:38–85Google Scholar
  44. Kidder S, Ducea MN (2006) High temperatures and inverted metamorphism in the schist of Sierra de Salinas, California. Earth Plan Sci Lett 241:422–437.  https://doi.org/10.1016/j.epsl.2005.11.037 CrossRefGoogle Scholar
  45. Konopásek J, Schulmann K, Johan V (2002) Eclogite-facies metamorphism at the eastern margin of the Bohemian Massif—subduction prior to continental underthrusting? Eur J Mineral 14:701–713.  https://doi.org/10.1127/0935-1221/2002/0014-0701 CrossRefGoogle Scholar
  46. Košler J, Konopásek J, Sláma J, Vrána S (2014) U-Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc 171:83–95.  https://doi.org/10.1144/jgs2013-059 CrossRefGoogle Scholar
  47. Košuličová M, Štípská P (2007) Variations in the transient prograde geothermal gradient from chloritoid-staurolite equilibria: a case study from the Barrovian and Buchan-type domains in the Bohemian Massif. J Metamorph Geol 25:19–35.  https://doi.org/10.1111/j.1525-1314.2006.00674.x CrossRefGoogle Scholar
  48. Kusbach V, Ulrich S, Schulmann K (2012) Ductile deformation and rheology of sub-continental mantle in a hot collisional orogeny: example from the Bohemian Massif. J Geodyn 56–57:108–123.  https://doi.org/10.1016/j.jog.2011.06.004 CrossRefGoogle Scholar
  49. Kusbach V, Janoušek V, Hasalová P, Schulmann K, Fanning CM, Erban V, Ulrich S (2015) Importance of crustal relamination in origin of the orogenic mantle peridotite–high-pressure granulite association: example from the Náměšť granulite massif (Bohemian Massif, Czech Republic). J Geol Soc 172:479–490.  https://doi.org/10.1144/jgs2014-070 CrossRefGoogle Scholar
  50. Kylander-Clark ARC (2017) Petrochronology by laser-ablation inductively coupled plasma mass spectrometry. Rev Mineral Petrol 83:183–196.  https://doi.org/10.2138/rmg.2017.83.6 CrossRefGoogle Scholar
  51. Kylander-Clark ARC, Hacker BR, Cottle JM (2013) Laser-ablation split-stream ICP petrochronology. Chem Geol 345:99–112.  https://doi.org/10.1016/j.chemgeo.2013.02.019 CrossRefGoogle Scholar
  52. Le Fort P (1975) Himalayas: the collided range, present knowledge of the continental arc. Am J Sci 275A:1–44Google Scholar
  53. Ludwig KR (2003) Isoplot 3.00. A geochronological toolkit for Microsoft Excel. 4:1–70Google Scholar
  54. Mahar EM, Baker JM, Powell R, Holland TJB, Howell N (1997) The effect of Mn on mineral stability in metapelites. J Metamorp Geol 15:223–238.  https://doi.org/10.1111/j.1525-1314.1997.00011.x CrossRefGoogle Scholar
  55. Maierová P, Lexa O, Schulmann K, Štípská P (2014) Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: a numerical model. Gondwana Res 25:509–521.  https://doi.org/10.1016/j.gr.2012.08.020 CrossRefGoogle Scholar
  56. Molnar P, England P (1990) Temperatures, heat flux, and frictional stress near major thrust faults. J Geophys Res Solid Earth 95:4833–4856.  https://doi.org/10.1029/jb095ib04p04833 CrossRefGoogle Scholar
  57. Nahodilová R, Štípská P, Powell R, Košler J, Racek M (2014) High-Ti muscovite as a prograde relict in high pressure granulites with metamorphic Devonian zircon ages (Běstvina granulite body, Bohemian Massif): consequences for the relamination model of subducted crust. Gondwana Res 25:630–648.  https://doi.org/10.1016/j.gr.2012.08.021 CrossRefGoogle Scholar
  58. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518.  https://doi.org/10.1039/c1ja10172b CrossRefGoogle Scholar
  59. Pecher A (1989) The metamorphism in the Central Himalaya. J Metamorp Geol 7:31–41CrossRefGoogle Scholar
  60. Peřestý V, Lexa O, Holder R, Jeřábek P, Racek M, Štípská P, Schulmann K, Hacker B (2017) Metamorphic inheritance of Rheic passive margin evolution and its early-Variscan overprint in the Teplá-Barrandian Unit, Bohemian Massif. J Metamorph Geol 35:327–355.  https://doi.org/10.1111/jmg.12234 CrossRefGoogle Scholar
  61. Pertoldová J, Verner K, Vrána S, Buriánek D, Štědrá V, Vondrovic L (2010) Comparison of lithology and tectonometamorphic evolution of units at the northern margin of the Moldanubian Zone: implications for geodynamic evolution in the northeastern part of the Bohemian Massif. J Geosciences 55:299–319.  https://doi.org/10.3190/jgeosci.083 CrossRefGoogle Scholar
  62. Petri B, Štípská P, Skrzypek E, Schulmann K, Corsini M, Franěk J (2014) Thermal and mechanical behaviour of the orogenic middle crust during the syn- to late-orogenic evolution of the Variscan root zone, Bohemian Massif. J Metamorph Geol 32:599–626.  https://doi.org/10.1111/jmg.12081 CrossRefGoogle Scholar
  63. Pfiffner OA (2016) Basement-involved thin-skinned and thick-skinned tectonics in the Alps. Geol Mag 153:1085–1109.  https://doi.org/10.1017/S0016756815001090 CrossRefGoogle Scholar
  64. Pitra P, Guiraud M (1996) Probable anticlockwise P–T evolution in extending crust: hlinsko region, Bohemian Massif. J Metamorph Geol 14:49–60CrossRefGoogle Scholar
  65. Powell R, Holland T, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorph Geol 16:577–588.  https://doi.org/10.1111/j.1525-1314.1998.00157.x CrossRefGoogle Scholar
  66. Preclik K (1924) Zur Analyse des Moravischen Faltenwurfes im Thayatale 180–191Google Scholar
  67. Preclik K (1926) Das Nordende der Thayakuppel 6:373–399Google Scholar
  68. Pyle JM, Spear FS (1999) Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions. Geol Mater Res 1:1–49Google Scholar
  69. Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107CrossRefGoogle Scholar
  70. Racek M, Štípská P, Pitra P, Schulmann K, Lexa O (2006) Metamorphic record of burial and exhumation of orogenic lower and middle crust: a new tectonothermal model for the Drosendorf window (Bohemian Massif, Austria). Mineral Petrol 86:221–251.  https://doi.org/10.1007/s00710-005-0111-7 CrossRefGoogle Scholar
  71. Racek M, Lexa O, Schulmann K, Corsini M, Štípská P, Maierová P (2017) Re-evaluation of polyphase kinematic and 40Ar/39Ar cooling history of Moldanubian hot nappe at the eastern margin of the Bohemian Massif. Int J Earth Sci 106:397–420.  https://doi.org/10.1007/s00531-016-1410-4 CrossRefGoogle Scholar
  72. Schulmann K (1990) Fabric and kinematic study of the Bíteš orthogneiss (southwestern Moravia): result of large-scale northeastward shearing parallel to the Moldanubian/Moravian boundary. Tectonophysics 177:229–244.  https://doi.org/10.1016/0040-1951(90)90283-E CrossRefGoogle Scholar
  73. Schulmann K, Gayer R (2000) A model for a continental accretionary wedge developed by oblique collision: the NE Bohemian Massif. J Geol Soc 157:401–416.  https://doi.org/10.1144/jgs.157.2.401 CrossRefGoogle Scholar
  74. Schulmann K, Ledru P, Autran A, Melka R, Lardeaux JM, Urban M, Lobkowicz M (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rundsch 80:73–92.  https://doi.org/10.1007/BF01828768 CrossRefGoogle Scholar
  75. Schulmann K, Melka R, Lobkowicz MZ, Ledru P, Lardeaux JM, Autran A (1994) Contrasting styles of deformation during progressive nappe stacking at the southeastern margin of the Bohemian Massif (Thaya Dome). J Struct Geol 16:355–370.  https://doi.org/10.1016/0191-8141(94)90040-X CrossRefGoogle Scholar
  76. Schulmann K, Lobkowicz M, Melka R, Fritz H (1995) Structure of the allochthonous Moravo-Silesian units. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin, pp 530–540CrossRefGoogle Scholar
  77. Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448.  https://doi.org/10.2475/ajs.305.5.407 CrossRefGoogle Scholar
  78. Schulmann K, Martelat JE, Ulrich S, Lexa O, Štípská P, Becker JK (2008) Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Metamorph Geol 26:273–297.  https://doi.org/10.1111/j.1525-1314.2007.00755.x CrossRefGoogle Scholar
  79. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Ede JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341:266–286.  https://doi.org/10.1016/j.crte.2008.12.006 CrossRefGoogle Scholar
  80. Schulmann K, Lexa O, Janoušek V, Lardeaux JM, Edel JB (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European variscides. Geology 42:275–278.  https://doi.org/10.1130/G35290.1 CrossRefGoogle Scholar
  81. Searle MP, Rex AJ (1989) Thermal model for the Zanskar Himalaya. J Metamorph Geol 7:127–134.  https://doi.org/10.1111/j.1525-1314.1989.tb00579.x CrossRefGoogle Scholar
  82. Soejono I, Žáčková E, Janoušek V, Machek M, Košler J (2010) Vestige of an Early Cambrian incipient oceanic crust incorporated in the Variscan orogen: letovice Complex, Bohemian Massif. J Geol Soc 167:1113–1130.  https://doi.org/10.1144/0016-76492009-180 CrossRefGoogle Scholar
  83. Souček J (1978) Metamorphic zones of the Vrbno and Rejvíz series, the Hrubý Jeseník Mountains. Czechoslovakia. 25:195–217Google Scholar
  84. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Plan Sci Lett 26:207–221.  https://doi.org/10.1016/0012-821X(75)90088-6 CrossRefGoogle Scholar
  85. Štípská P, Schulmann K (1995) Inverted metamorphic zonation in a basement-derived nappe sequence, eastern margin of the Bohemian Massif. Geol J 30:385–413.  https://doi.org/10.1002/gj.3350300315 CrossRefGoogle Scholar
  86. Štípská P, Schulmann K, Höck V (2000) Complex metamorphic zonation of the Thaya dome: result of buckling and gravitational collapse of an imbricated nappe sequence vol 169.  https://doi.org/10.1144/gsl.sp.2000.169.01.15 CrossRefGoogle Scholar
  87. Štípská P, Schulmann K, Kröner A (2004) Vertical extrusion and middle crustal spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic). J Metamorph Geol 22:179–198.  https://doi.org/10.1111/j.1525-1314.2004.00508.x CrossRefGoogle Scholar
  88. Štípská P, Schulmann K, Powell R (2008) Contrasting metamorphic histories of lenses of high-pressure rocks and host migmatites with a flat orogenic fabric (Bohemian Massif, Czech Republic): a result of tectonic mixing within horizontal crustal flow? J Metamorph Geol 26:623–646.  https://doi.org/10.1111/j.1525-1314.2008.00781.x CrossRefGoogle Scholar
  89. Štípská P, Hacker BR, Racek M, Holder R, Kylander-Clark ARC, Schulmann K, Hasalová P (2015) Monazite dating of prograde and retrograde P-T-d paths in the Barrovian terrane of the Thaya window, Bohemian Massif. J Pet 56:1007–1035.  https://doi.org/10.1093/petrology/egv026 CrossRefGoogle Scholar
  90. Štípská P, Powell R, Hacker BR, Holder R, Kylander-Clark ARC (2016) Uncoupled U/Pb and REE response in zircon during the transformation of eclogite to mafic and intermediate granulite (Blanský les, Bohemian Massif). J Metamorph Geol 34:551–572.  https://doi.org/10.1111/jmg.12193 CrossRefGoogle Scholar
  91. Suess FE (1912) Die Moravischen Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenkes. Kaiserlich-königlichen Hof-und Staatsdruckerei 88:541–631Google Scholar
  92. Suess FE (1926) Intrusionstektonik und Wandertektonik im variszichen Grundgebirge. Verlag Bornttrager, BerlinGoogle Scholar
  93. Tajčmanová L, Konopásek J, Schulmann K (2006) Thermal evolution of the orogenic lower crust during exhumation within a thickened Moldanubian root of the Variscan belt of Central Europe. J Metamorph Geol 24:119–134.  https://doi.org/10.1111/j.1525-1314.2006.00629.x CrossRefGoogle Scholar
  94. Tajčmanová L, Soejono I, Konopásek J, Košler J, Klötzli U (2010) Structural position of high-pressure felsic to intermediate granulites from NE Moldanubian domain (Bohemian Massif). J Geol Soc 167:329–345.  https://doi.org/10.1144/0016-76492009-086 CrossRefGoogle Scholar
  95. Tollmann A (1982) Großräumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas 64:1–91Google Scholar
  96. Treloar PJ, Broughton RD, Williams MP, Coward MP, Windley BF (1989) Deformation, metamorphism and imbrication of the Indian plate, south of the Main Mantle Thrust, north Pakistan. J Metamorph Geol 7:111–125.  https://doi.org/10.1111/j.1525-1314.1989.tb00578.x CrossRefGoogle Scholar
  97. Ulrich S, Schulmann K, Casey M (2002) Microstructural evolution and rheological behaviour of marbles deformed at different crustal levels. J Struct Geol 24:979–995.  https://doi.org/10.1016/S0191-8141(01)00132-8 CrossRefGoogle Scholar
  98. White RW, Powel R, Holland TJB, Worley B (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 18:497–511.  https://doi.org/10.1046/j.1525-1314.2000.00269.x CrossRefGoogle Scholar
  99. White RW, Pomroy NE, Powell R (2005) An in situ metatexite-diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia. J Metamorph Geol 23:579–602.  https://doi.org/10.1111/j.1525-1314.2005.00597.x CrossRefGoogle Scholar
  100. White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527.  https://doi.org/10.1111/j.1525-1314.2007.00711.x CrossRefGoogle Scholar
  101. Wing BA, Ferry JM, Harrison TM (2003) Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contrib Mineral Petrol 145:228–250.  https://doi.org/10.1007/s00410-003-0446-1 CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg, CNRS UMR7516, Université de StrasbourgStrasbourg CedexFrance
  2. 2.Center for Lithospheric Research, Czech Geological SurveyPraha 1Czech Republic
  3. 3.Institute of Petrology and Structural GeologyCharles University in PraguePraha 2Czech Republic
  4. 4.Géoazur, UMR 7329, Université Sophia-AntipolisValbonneFrance
  5. 5.Department of Earth ScienceUniversity of CaliforniaSanta BarbaraUSA
  6. 6.Regional Geology of Crystalline Complexes DepartmentCzech Geological SurveyPraha 1Czech Republic

Personalised recommendations