Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 8, pp 2545–2560 | Cite as

Galicia Bank sediment transport activity in response to continuous sedimentary instability dynamics: a geotechnical perspective

  • Mariano YenesEmail author
  • David Casas
  • José Nespereira
  • Serafín Monterrubio
  • Gemma Ercilla
  • Nieves López-González
Original Paper

Abstract

The sedimentary instability dynamics occurring over time throughout the isolated Galicia Bank (Atlantic Ocean, NW Iberian Peninsula) have been studied using a sedimentological and geotechnical approach featuring a quantitative assessment of slope stability under different scenarios, including earthquake activity. The erosion of the scarps in the Galicia Bank includes the continuous development of small instabilities evacuated along gullies and channels or deposited on slopes. These deposits may be subsequently mobilized, evolving into new sedimentary gravity flows (e.g., turbidity flow). The studied sediments consist mostly of poorly to very poorly sorted sands and silts transported by turbidity currents and occasionally by debris flow processes. The sediments in the study area identified as normally consolidated and located on gently sloping areas (gradients less than 5°) may become unstable if low-magnitude seismic events occur (PGA < 0.12). Even under static conditions, they could become unstable if they are located on slopes of > 10° without any trigger other than oversteepening. In contrast, overconsolidated sediments may remain stable under static conditions and may become unstable on slope gradients > 10° when earthquakes occur with the maximum peak ground acceleration (PGA = 0.34). The sedimentological and geotechnical models presented herein are complementary approaches that can be utilized to understand the long-term sedimentary instability dynamics observed within the study area. Such results are critical for better understanding sedimentary models of the dismantling processes of deep seamounts located far away from continental sedimentary inputs.

Keywords

Seamount Slope stability Marine sediment strength Geotechnical properties Earthquake Galicia Bank 

Notes

Acknowledgements

This study was supported by the Spanish projects ANTES (CTM2011-14030-E), MOWER (CTM2012 -39599-C03) and FAUCES (CTM2015-65461-C2-1-R).

References

  1. Abramson LW, Lee TS, Sharma S, Boyce GM (2002) Slope stability and stabilization methods, 2nd edn. Wiley, New YorkGoogle Scholar
  2. AENOR (1999) Standard test methods for geotechnical tests (soils). Spanish association of standardization and certification (In Spanish)Google Scholar
  3. Ai F, Kuhlmann J, Huhn K, Strasser M, Kopf A (2014) Submarine slope stability assessment of the central mediterranean continental margin: the gela basin. In: Krastel S, Behrmann J-H, Völker D, Stipp M, Berndt C, Urgeles R, Chaytor J, Huhn K, Strasser M, Harbitz CB (eds) Submarine mass movements and their consequences. Springer International Publishing, Heidelberg, pp 225–236CrossRefGoogle Scholar
  4. Alonso B, Ercilla G, Casas D, Estrada F, Farrán M, García M, Rey D, Rubio B (2008) Late pleistocene and holocene sedimentary facies on the SW Galicia Bank (Atlantic NW Iberian Peninsula). Mar Geol 249:46–63CrossRefGoogle Scholar
  5. Alonso B, Ercilla G, Garcia M, Vázquez JT, Juan C, Casas D, Estrada F, Acremont E, Gorini C, Moumni B, Farran M (2014) Quaternary mass-transport deposits on the north-eastern Alboran Seamounts (SW Mediterranean Sea). In: Krastel S, Behrmann J-H, Völker D, Stipp M, Berndt C, Urgeles R, Chaytor J, Huhn K, Strasser M, Harbitz CB (eds) Submarine mass movements and their consequences. Springer International Publishing, Heidelberg, pp 561–570CrossRefGoogle Scholar
  6. ASTM D2487 (2011) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West ConshohockenGoogle Scholar
  7. Biscontin G, Pestana JM, Nadim F (2004) Seismic triggering of submarine slides in soft cohesive soil deposits. Mar Geol 203:341–354CrossRefGoogle Scholar
  8. Bishop AW (1955) The use of the slip circle in the stability analysis of slopes. Géotechnique 5:7–17CrossRefGoogle Scholar
  9. Boillot G, Malod J (1988) The North and North-West Spanish Continental Margin: a review. Rev Soc Geol Esp 1:295–316Google Scholar
  10. Boillot G, Auxietre J, Durand J, Dupeuble P, Mauffret A (1979) The northwestern Iberian Margin: a Cretaceous passive margin deformed during Eocene. In: Talwani M, Hay W, Ryan WBF (eds) Deep drilling results in the atlantic ocean: continental margin and paleoenvironment. Maurice Ewing Series. American Geophysical Union, Washington, DC, pp 138–153CrossRefGoogle Scholar
  11. Boillot G, Comas M, Girardeau J, Kornprobst J, Loreau J-P, Malod J, Mougenot D, Moullade M (1986) Fonds sous-marins basaltiques et ultramafiques au pied d’une marge stable. Résultats préliminaires de la campagne Galinaute (plongées du submersible Nautile à l’Ouest de l’Espagne). C R Acad Sci Gen 303:1719–1724Google Scholar
  12. Bouma AH (1962) Sedimentology of some flysch deposits: a graphic approach to facies interpretation. Elsevier Pub. Co., AmsterdamGoogle Scholar
  13. Bryant WR, Bennet RH (1988) Origin, physical, and mineralogical nature of red clays: the Pacific Ocean Basin as a model. Geo-Mar Lett 8:189–249CrossRefGoogle Scholar
  14. Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthq Spectra 24:139–171CrossRefGoogle Scholar
  15. Casas D, Ercilla G, Baraza J, Coakley B (2006) Physical properties and their relationship to texture and consolidation effects in pliocene-quaternary sediments from Madeira abyssal plain. Mar Georesources Geotechnol 24:265–286CrossRefGoogle Scholar
  16. Casas D, Ercilla G, García M, Yenes M, Estrada F (2013) Post-rift sedimentary evolution of the Gebra Debris Valley. A submarine slope failure system in the Central Bransfield Basin (Antarctica). Mar Geol 340:16–29CrossRefGoogle Scholar
  17. Casas D, Casalbore D, Yenes M, Urgeles R (2015) Submarine mass movements around the Iberian Peninsula. The building of continental margins through hazardous processes. Bol Geol Min 126:257–278Google Scholar
  18. Chaytor JD, Keller RA, Duncan RA, Dziak RP (2007) Seamount morphology in the Bowie and Cobb hot spot trails, Gulf of Alaska. Geochem Geophys Geosyst 8(9):Q09016CrossRefGoogle Scholar
  19. Chenet P, Montadert L, Gairaud H, Roberts DG (1982) Extension ratio measurements on the Galicia, Portugal, and Northern Biscay continental margins: implications for evolutionary models of passive continental margins. In: Watkins JS, Drake CL (eds) Studies in continental margin geology. AAPG, Tulsa, pp 703–715Google Scholar
  20. Clare MA, Talling PJ, Challenor P, Malgesini G, Hunt J (2014) Distal turbidites reveal a common distribution for large (> 0.1 km3) submarine landslide recurrence. Geology 42:263–266CrossRefGoogle Scholar
  21. Custódio S, Dias NA, Carrilho F, Góngora E, Rio I, Marreiros C, Morais I, Alves P, Matias L (2015) Earthquakes in western Iberia: improving the understanding of lithospheric deformation in a slowly deforming region. Geophys J Int 203:127–145CrossRefGoogle Scholar
  22. Díaz J, Gallart J, Gaspà O, Ruiz M, Córdoba D (2008) Seismicity analysis at the prestige oil-tanker wreck area (Galicia Margin, NW of Iberia). Mar Geol 249:150–165CrossRefGoogle Scholar
  23. Druet M, Muñoz-Martín A, Granja-Bruña JL, Carbó-Gorosabel A, Acosta J, Llanes P, Ercilla G (2018) Crustal structure and continent-ocean boundary along the Galicia continental margin (NW Iberia): insights from combined gravity and seismic interpretation. Tectonics 37(5):1576–1604CrossRefGoogle Scholar
  24. Edwards BD, Lee HJ, Karl HA, Reimnitz E, Timothy LA (1987) Geology and physical properties of Ross Sea, Antarctica, continental shelf sediment. In: Cooper AK, Davey FJ (eds) The antarctic continental margin: geology and geophysics of the Western Ross Sea. Circum-Pacific Council for Energy and Mineral Resources, Houston, pp 191–216Google Scholar
  25. Engdahl ER, Villaseñor A (2002) Global seismicity: 1900–1999. In: Lee WHK, Jennings P, Kisslinger C, Kanamori H (eds) International handbook of earthquake & engineering seismology, Part A. Elsevier Science, Amsterdam, pp 665–690CrossRefGoogle Scholar
  26. Ercilla G, Córdoba D, Gallart J, Gràcia E, Muñoz JA, Somoza L, Vázquez JT, Vilas F (2006) Geological characterization of the Prestige sinking area. Mar Pollut Bull 53:208–219CrossRefGoogle Scholar
  27. Ercilla G, García-Gil S, Estrada F, Gràcia E, Vizcaino A, Váquez JT, Díaz S, Vilas F, Casas D, Alonso B, Dañobeitia J, Farran M (2008) High-resolution seismic stratigraphy of the Galicia Bank Region and neighbouring abyssal plains (NW Iberian continental margin) Mar. Geol 249:108–127Google Scholar
  28. Ercilla G, Casas D, Vázquez JT, Iglesias J, Somoza L, Juan C, Medialdea T, León R, Estrada F, García-Gil S, Farran ML, Bohoyo F, García M, Maestro A (2011) Imaging the recent sediment dynamics of the Galicia Bank region (Atlantic, NW Iberian Peninsula). Mar Geophys Res 32:99–126CrossRefGoogle Scholar
  29. Fryer P, Gill JB, Jackson MC (1997) Volcanologic and tectonic evolution of the Kasuga seamounts, northern Mariana Trough: alvin submersible investigations. J Volcanol Geotherm Res 79:277–311CrossRefGoogle Scholar
  30. Groupe Galice (1979) The continental margin off Galicia and Portugal: acoustical stratigraphy and structural evolution. In: Sibuet J-C, Ryan WBF (eds) Initial reports of the deep sea drilling project. Government Printing Office, Washington, DC, pp 633–662Google Scholar
  31. Hamilton EL (1964) Consolidation characteristics and related properties of sediments from experimental mohole (Guadalupe site). J Geophys Res 69:4257–4269CrossRefGoogle Scholar
  32. Hamm NAS, Hall JW, Anderson MG (2006) Variance-based sensitivity analysis of the probability of hydrologically induced slope instability. Comput Geosci 32:803–817CrossRefGoogle Scholar
  33. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59CrossRefGoogle Scholar
  34. Hernández-Molina FJ, Llave E, Ercilla G, Maestro A, Medialdea T, Ferrin A, Somoza L, Gràcia E, Masson DG, García M, Vizcaino A, León R (2008) Recent sedimentary processes in the Prestige site area (Galicia Bank, NW Iberian Margin) evidenced by high-resolution marine geophysical methods. Mar Geol 249:21–45CrossRefGoogle Scholar
  35. Hynes-Griffin ME, Franklin AG (1984) Rationalizing the seismic coefficient method, miscellaneous paper GL-84-13. US Army Corps of Engineers Waterways Experiment Station, VicksburgGoogle Scholar
  36. Instituto Geográfico Nacional, Spain (2018) Catálogo de terremotos. Accessed 20 Feb 2018Google Scholar
  37. Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, New JerseyGoogle Scholar
  38. Ladd CC, Edgers L (1972) Consolidated-undrained direct-simple shear tests on saturated clays: research in earth physics, phase report no. 16. Massachusetts Institute of Technology, Department of Civil Engineering, CambridgeGoogle Scholar
  39. Lee HJ (2009) Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar Geol 264:53–64CrossRefGoogle Scholar
  40. Leroueil S, Locat J, Vaunat J, Picarelli L, Lee H, Faure R (1996) Geotechnical charaterisation of landslides. In: Senneset K (ed) 7th International Symposium on Landslides. Balerna, Rotterdam, pp 53–74Google Scholar
  41. Leynaud D, Mienert J, Nadim F (2004) Slope stability assessment of the Helland Hansen area offshore the mid-Norwegian margin. Mar Geol 213:457–480CrossRefGoogle Scholar
  42. Llave E, García M, Pérez C, Farran M, Ercilla G, Somoza L, León R, Maestro A, Medialdea T, Hernández-Molina FJ, Álvarez R, Durán R, Mohamed K (2008) Morphological feature analyses of the Prestige half-graben on the SW Galicia Bank. Mar Geol 249(1–2):7–20CrossRefGoogle Scholar
  43. Locat J (2018) Failure and post-failure analysis of submarine mass movements using geomorphology and geomechanical concepts. Geological Society,Special Publications, LondonGoogle Scholar
  44. Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212CrossRefGoogle Scholar
  45. Maestro A, Jané G, Llave E, López-Martínez J, Bohoyo F, Druet M (2018) The role of tectonic inheritance in the morphostructural evolution of the Galicia continental margin and adjacent abyssal plains from digital bathymetric model (DBM) analysis (NW Spain). Int J Earth Sci 107(4):1267–1286CrossRefGoogle Scholar
  46. Mauffret A, Montadert L (1988) Seismic stratigraphy off Galicia (Spain). Proc. Init. G Boillot, E.L Winterer, A.W Meyer, et al. (eds.) Proc. Ocean Drill. Program Sci. Results, 103 (1988), pp 13–30Google Scholar
  47. Medialdea T, Somoza L, León R, Farrán M, Ercilla G, Maestro A, Casas D, Llave E, Hernández-Molina FJ, Fernández-Puga MC, Alonso B (2008) Multibeam backscatter as a tool for sea-floor characterization and identification of oil spills in the Galicia Bank. Mar Geol 249:93–107CrossRefGoogle Scholar
  48. Melo C, Sharma S (2004) Seismic coefficients for pseudostatic slope analysis. In: 13th World Conference on Earthquake Engineering, Vancouver, CA, 1–6 Aug 2004. Paper no 369Google Scholar
  49. Mitchell NC, Lofi J (2008) Submarine and subaerial erosion of volcanic landscapes: comparing Pacific Ocean seamounts with Valencia Seamount, exposed during the Messinian Salinity Crisis. Basin Res 20:489–502CrossRefGoogle Scholar
  50. Montadert L, Winnock E, Delteil JR, Grau G (1974) Portugal and Bay of Biscay. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer Verlag, Berlin, pp 323–342CrossRefGoogle Scholar
  51. Murillas J, Mougenot D, Boillot G, Comas M, Banda E, Mauffret A (1990) Structure and evolution of the Galicia interior basin (Atlantic western Iberian continental margin). Tectonophysics 184:297–319CrossRefGoogle Scholar
  52. Nixon MF, Grozic JL (2006) A simple model for submarine slope stability analysis with gas hydrates. Nor. J. Geol. 86:309–316Google Scholar
  53. Olivet J, Bonnin J, Beuzart P, Auzende J (1984) Cinématique de l’atlantique nord et central. Rapp Scientifique Tech 56:108–112Google Scholar
  54. Owen M, Day S, Maslin M (2007) Late Pleistocene submarine mass movements: occurrence and causes. Quat Sci Rev 26:958–978CrossRefGoogle Scholar
  55. Pérez LF, Bohoyo F, Hernández-Molina FJ, Casas D, Galindo-Zaldívar J, Ruano P, Maldonado A (2016) Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis. J Geophys Res 121:2216–2234CrossRefGoogle Scholar
  56. Rey D, Rubio B, Mohamed K, Vilas F, Alonso B, Ercilla G, Rivas T (2008) Detrital and early diagenetic processes in Late Pleistocene and Holocene sediments from the SW Galicia Bank inferred from high-resolution enviromagnetic and geochemical records. Mar Geol 249:64–92CrossRefGoogle Scholar
  57. Richards AF, Hamilton EL (1967) Investigations of deep-sea sediment cores, III. Consolidation. In: Richards A (ed) Marine Geotechnique. University of Illinois, Urbana, pp 93–102Google Scholar
  58. Rocscience (2018) SLIDE 8.0-2D Slope Stability Analysis for Soil and Rock Slopes. Rocscience Inc Toronto, Canada, CAGoogle Scholar
  59. Saltelli A, Chan K, Scott EM (2000) Sensitivity Analysis. Wiley, ChichesterGoogle Scholar
  60. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, ChichesterGoogle Scholar
  61. Sansoucy M, Locat J, Lee HJ (2007) Geotechnical considerations of submarine canyon formation: the case of cap de creus canyon. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine mass movements and their consequences. Springer, Netherlands, pp 221–230CrossRefGoogle Scholar
  62. Seed HB, Tokimatsu K, Harder LF, Chung RM (1985) Influence of SPT procedures in soil liquefaction resistance evaluations. J. Geotechn Eng 111:1425–1445CrossRefGoogle Scholar
  63. Shanmugam G, Moiola RJ (1982) Eustatic control of turbidites and winnowed turbidites. Geology 10:231–235CrossRefGoogle Scholar
  64. Sibuet JC, Ryan WBF (1979) Initial Reports of the Deep Sea Drilling Project. U.S. Govt Printing Office, Washington, DCGoogle Scholar
  65. Silva AJ, Jordan SA (1984) Consolidation properties and stress history of some deep sea sediment. In: Seabed mechanics. Denness B (ed) International Union of Theoretical and Applied Mechanics, pp 25–39Google Scholar
  66. Strasser M, Stegmann S, Bussmann F, Anselmetti FS, Rick B, Kopf A (2007) Quantifying subaqueous slope stability during seismic shaking: lake Lucerne as model for ocean margins. Mar Geol 240:77–97CrossRefGoogle Scholar
  67. Sultan N, Cochonat P, Dennielou B, Bourillet J-F, Savoye B, Colliat J-L (2000) Surconsolidation apparente et pression osmotique dans un sédiment marin. C R Acad Sci Gen 331:379–386Google Scholar
  68. Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg JS, Long D, Mienert J, Trincardi F, Urgeles R, Vorren TO, Wilson C (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213:291–321CrossRefGoogle Scholar
  69. Talling P, Clare M, Urlaub M, Pope E, Hunt J, Watt S (2014) Large submarine landslides on continental slopes: geohazards, methane release, and climate change. Oceanography 27:32–45CrossRefGoogle Scholar
  70. Urgeles R, Leynaud D, Lastras G, Canals M, Mienert J (2006) Back-analysis and failure mechanisms of a large submarine slide on the ebro slope, NW Mediterranean. Mar Geol 226:185–206CrossRefGoogle Scholar
  71. Vail PR, Mitchum RM, Thompson S (1977) Seismic stratigraphy and global changes of sea level, part 4, global cycles of relative changes of sea level. In: Payton CE (ed.) Seismic Stratigraphy–Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir 26: 83–97Google Scholar
  72. Vázquez JT, Medialdea T, Ercilla G, Somoza L, Estrada F, Puga MCF, Gallart J, Gràcia E, Maestro A, Sayago M (2008) Cenozoic deformational structures on the Galicia Bank Region (NW Iberian continental margin). Mar Geol 249:128–149CrossRefGoogle Scholar
  73. Veludo I, Dias NA, Fonseca PE, Matias L, Carrilho F, Haberland C, Villaseñor A (2017) Crustal seismic structure beneath Portugal and southern Galicia (Western Iberia) and the role of Variscan inheritance. Tectonophysics 717:645–664CrossRefGoogle Scholar
  74. Vizcaino A, Gràcia E, Pallàs R, Casas D, Willmott V, Diez S, Asioli A, Dañobeitia J (2006) Sedimentology, physical properties and age of mass transport deposits associated with the Marques de Pombal Fault, Southwest Portuguese Margin. Nor J Geol 86:177–186Google Scholar
  75. Wetzel A (1990) Interrelationships between porosity and other geotechnical properties of slowly deposited, fine-grained marine surface sediments. Mar Geol 92:105–113CrossRefGoogle Scholar
  76. Wright IC (1996) Volcaniclastic processes on modern submarine arc stratovolcanoes: sidescan and photographic evidence from the Rumble IV and V volcanoes, southern Kermadec Arc (SW Pacific). Mar Geol 136:21–39CrossRefGoogle Scholar
  77. Wright IC, Worthington TJ, Gamble JA (2006) New multibeam mapping and geochemistry of the 30–35 S sector, and overview, of southern Kermadec arc volcanism. J. Volcanol. Geotherm. Res. 149:263–296CrossRefGoogle Scholar
  78. Yenes M, Casas D, Monterrubio S, Ercilla G, Nespereira J (2012) Geotechnical characteristics of sediments in Galicia Bank region. First results, in VIII Congreso Geológico de España. Oviedo. Geo-Temas 13: 529Google Scholar
  79. Yenes M, Monterrubio S, Nespereira J, Casas D (2016) Apparent over-consolidation in marine sediments, in IX Congreso Geológico de España. Huelva. Geo-Temas 16:307–310Google Scholar
  80. Zhang L, Luan X (2013) Stability of submarine slopes in the northern South China Sea: a numerical approach. Chin J Oceanol Limnol 31:146–158CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Departamento de Geología, Facultad de CienciasUniversidad de SalamancaSalamancaSpain
  2. 2.Instituto Geológico y Minero de EspañaMadridSpain
  3. 3.Institut de Ciències del Mar (CSIC)BarcelonaSpain
  4. 4.Instituto Español de OceanografíaCentro Oceanográfico de MálagaMálagaSpain

Personalised recommendations