Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 6, pp 2047–2056 | Cite as

Surface volume and gravity changes due to significant earthquakes occurred in central Italy from 2009 to 2016

  • Federica RiguzziEmail author
  • Hongbo Tan
  • Chongyang Shen
Original Paper
  • 64 Downloads

Abstract

We have modelled the surface volume and gravity changes caused by four seismic events: three mainshocks (moment magnitude Mw 6.0, 5.9, 6.5) occurred during the last seismic period started on 2016, August 24 in central Italy, and the 2009, April 6 L’Aquila Earthquake (Mw 6.3). Our calculations start from the source parameters estimated by the inversion of the largest dataset of Interferometric Synthetic Aperture Radar (InSAR) and global positioning system observations ever managed in Italy after earthquake occurrences, based on the half-space elastic dislocation theory. The vertical displacements modelled after the 2016 events allow to infer a substantial unbalance between the subsided and uplifted volumes. In particular, we detected ~ 106 × 106 m3 of hangingwall subsidence against ~ 37 × 106 m3 of footwall uplift, that accounts for ~ 74% of the total volume mobilization. From the ratio between the footwall and total deformed volumes, we have computed an average fault dip of ~ 47°, in line with the values retrieved by seismological methods. The total gravity variations which affected the study area are of the order of ~ 1 μGal (1 μGal = 10−8 ms−2) in the far field, and ~ 170 μGal in the near field. The area affected within a gravity change of 1 μGal is ~ 140 km long and ~ 57 km wide, parallel to the Apennines mountain chain. The larger contribution is given by positive variations which account for the tensional style of deformation and larger subsided area. The significant gravity variations modelled from the coseismic deformations point out the need to update our knowledge about the absolute gravity field in Italy carrying out extensive measurements, and to align Italy to the recent international standards about national gravity and height networks (International Association of Geodesy, IAG Report, Commission 2—gravity field, http://www.iag-commission2.ch, 2015).

Keywords

Central Italy 2016 Seismic sequence 2016 Norcia Earthquake 2009 L’Aquila Earthquake Coseismic vertical displacements Surface volume variation Gravity changes 

Notes

Acknowledgements

This study is based on geodetic data and models acquired and processed during the 2016 and 2009 earthquake emergencies, therefore, we are very grateful to Daniele Cheloni and all the INGV Geodetic Team, together we worked intensely and with passion during all that time. We are also grateful to the Reviewers and the Editor, their suggestions helped us to improve the manuscript.

References

  1. Anzidei M et al (2009) Coseismic deformation of the destructive April 6, 2009 L’Aquila Earthquake (central Italy) from GPS data. Geophys Res Lett 36:L17307.  https://doi.org/10.1029/2009gl039145 CrossRefGoogle Scholar
  2. Atzori S, Hunstad I, Chini M, Salvi S, Tolomei C, Bignami C, Stramondo S, Trasatti E, Antonioli A, Boschi E (2009) Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila Earthquake (central Italy). Geophys Res Lett 36:L15305.  https://doi.org/10.1029/2009gl039293 CrossRefGoogle Scholar
  3. Boncio P, Lavecchia G, Pace B (2004) Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: the case of central Apennines (Italy). J Seismol 8:407–425CrossRefGoogle Scholar
  4. Brozzetti F, Boncio P, Lavecchia G, Pace B (2009) Present activity and seismogenic potential of a low-angle normal fault system (Città di Castello, Italy): constraints from surface geology, seismic reflection data and seismicity. Tectonophysics 463:31–46.  https://doi.org/10.1016/j.tecto.2008.09.023 CrossRefGoogle Scholar
  5. Brozzetti F, Boncio P, Cirillo D, Ferrarini F, Nardis R, Testa A, Liberi F, Lavecchia G (2019) High-resolution field mapping and analysis of the August–October 2016 coseismic surface faulting (central Italy earthquakes): slip distribution, parameterization, and comparison with global earthquakes. Tectonics 38(2):417–439CrossRefGoogle Scholar
  6. Calderoni G, Rovelli A, Di Giovambattista R (2017) Rupture directivity of the strongest 2016–2017 central Italy earthquakes. J Geophys Res Solid Earth 122:9118–9131.  https://doi.org/10.1002/2017jb014118 CrossRefGoogle Scholar
  7. Cambiotti G, Sabadini R (2013) Gravitational seismology retrieving Centroid-Moment-Tensor solution of the 2011 Tohoku Earthquake. J Geophys Res Solid Earth 118:183–194.  https://doi.org/10.1029/2012jb009555 CrossRefGoogle Scholar
  8. Cheloni D, D’Agostino N, D’Anastasio E, Avallone A, Mantenuto S, Giuliani R, Mattone M, Calcaterra S, Gambino P, Dominici D, Radicioni F, Castellini F (2010) Coseismic and initial postseismic slip of the 2009 MW 6.3 L’Aquila Earthquake, Italy, from GPS measurements. Geophys J Int 181:1539–1546.  https://doi.org/10.1111/j.1365-246x.2010.04584.x Google Scholar
  9. Cheloni D, Giuliani R, D’Anastasio E, Atzori S, Walters RJ, Bonc L, D’Agostino N, Mattone M, Calcaterra S, Gambino P, Deninno F, Maseroli R, Stefanelli G (2014) Coseismic and post-seismic slip of the 2009 L’Aquila (central Italy) MW 6.3 Earthquake and implications for seismic potential along the Campotosto Fault from joint inversion of high-precision levelling, InSAR and GPS data. Tectonophysics 622:168–185.  https://doi.org/10.1016/j.tecto.2014.03.009 CrossRefGoogle Scholar
  10. Cheloni D et al (2017) Geodetic model of the 2016 central Italy earthquake sequence inferred from InSAR and GPS data. Geophys Res Lett 44:6778–6787.  https://doi.org/10.1002/2017gl073580 CrossRefGoogle Scholar
  11. Chiarabba C, De Gori P, Cattaneo M, Spallarossa D, Segou M (2018) Faults geometry and the role of fluids in the 2016–2017 central Italy seismic sequence. Geophys Res Lett 45:6963–6971.  https://doi.org/10.1029/2018gl077485 CrossRefGoogle Scholar
  12. Chiaraluce L, Amato A, Cocco M, Chiarabba C, Selvaggi G, Di Bona M, Piccinini D, Deschamps A, Margheriti L, Courboulex F, Ripepe M (2004) Complex normal faulting in the Apennines Thrust-and-Fold Belt: the 1997 seismic sequence in central Italy. Bull Seismol Soc Am 94(1):99–116CrossRefGoogle Scholar
  13. Chiaraluce L, Di Stefano R, Tinti E, Scognamiglio L, Michele M, Casarotti M, Cattaneo M, De Gori P, Chiarabba C et al (2017) The 2016 central Italy seismic sequence: a first look at the mainshocks, aftershocks, and source models. Seismol Res Lett 88:757–771CrossRefGoogle Scholar
  14. Chinnery MA (1961) The deformation of ground around surface faults. Bull Seismol Soc Am 51:355–372Google Scholar
  15. Ciaccio MG (2016) Instrumental seismicity of the Amatrice Earthquake epicentral area: a review. Ann Geophys.  https://doi.org/10.4401/ag-7283 Google Scholar
  16. Cunietti M, Inghilleri G (1955) La rete gravimetrica fondamentale italiana. Memorie Commissione Geodetica Italiana 8. Stamperia Cesare Tamburini fu Camillo, Milano (in Italian)Google Scholar
  17. Devoti R (2012) Combination of coseismic displacement fields: a geodetic perspective. Ann Geophys 55(4):781–787.  https://doi.org/10.4401/ag-6119 Google Scholar
  18. Devoti R, Riguzzi F (2017) The velocity field of the Italian area. Rend Fis Acc Lincei 29(Suppl 1):S51–S58.  https://doi.org/10.1007/s12210-017-0651-x Google Scholar
  19. Devoti R, Riguzzi F, Cuffaro M, Doglioni C (2008) New GPS constraints on the kinematics of the Apennines subduction. Earth Planet Sci Lett 273:163–174CrossRefGoogle Scholar
  20. Devoti R, D’Agostino N, Serpelloni E, Pietrantonio G, Riguzzi F, Avallone A, Cavaliere A, Cheloni D, Cecere G, D’Ambrosio C, Falco L, Selvaggi G, Métois M, Esposito A, Sepe V, Galvani A, Anzidei M (2017) The Mediterranean Crustal Motion Map compiled at INGV. Ann Geophys.  https://doi.org/10.4401/ag-7059 Google Scholar
  21. Di Luccio F, Ventura G, Di Giovambattista R, Piscini A, Cinti FR (2010) Normal faults and thrusts reactivated by deep fluids: the 6 April 2009 Mw 6.3 L’Aquila Earthquake, central Italy. J Geophys Res 115:B06315.  https://doi.org/10.1029/2009jb007190 CrossRefGoogle Scholar
  22. Falcucci E, Gori S, Peronace E, Fubelli G, Moro M, Saroli M, Giaccio B, Messina P, Naso G, Scardia G, Sposato A, Voltaggio M, Galli P, Galadini F (2009) The Paganica Fault and surface coseismic ruptures caused by the 6 April 2009 earthquake (L’Aquila, central Italy). Seismol Res Lett 80(6):940–950CrossRefGoogle Scholar
  23. Falcucci E, Gori S, Galadini F, Fubelli G, Moro M, Saroli M (2016) Active faults in the epicentral and mesoseismal Ml 6.0 24, 2016 Amatrice Earthquake region, central Italy. Methodological and seismotectonic issues. Ann Geophys.  https://doi.org/10.4401/ag-7266 Google Scholar
  24. Fu G (2007) Surface gravity changes caused by tied-generating potential and by internal dislocation in a 3-D heterogeneous earth. Thesis, University of Tokyo, JapanGoogle Scholar
  25. Galadini F, Galli P (2003) Paleoseismology of silent faults in the central Apennines (Italy): the Mt. Vettore and Laga Mts Faults. Ann Geophys.  https://doi.org/10.4401/ag-3457 Google Scholar
  26. Galvani A, Anzidei M, Devoti R, Esposito A, Pietrantonio G, Pisani AR, Riguzzi F, Serpelloni E (2012) The interseismic velocity field of the central Apennines from a dense GPS network. Ann Geophys.  https://doi.org/10.4401/ag-6168 Google Scholar
  27. Gentili S, Di Giovambattista R, Peresan A (2017) Seismic quiescence preceding the central Italy earthquakes. PEPI 272:27–33.  https://doi.org/10.1016/j.pepi.2017.09.004 Google Scholar
  28. Harms J, Ampuero J-P, Barsuglia M, Chassande-Mottin E, Montagner J-P, Somala SN, Whiting BF (2015) Transient gravity perturbations induced by earthquake rupture. Geophys J Int 201(3):1416–1425CrossRefGoogle Scholar
  29. Iezzi F, Roberts G, Walker JF, Papanikolaou I (2019) Occurrence of partial and total coseismic ruptures of segmented normal fault systems: insights from the central Apennines, Italy. J Struct Geol 126:83–99.  https://doi.org/10.1016/j.jsg.2019.05.003 CrossRefGoogle Scholar
  30. Imanishi Y, Sato T, Higashi T, Sun W, Okubo S (2004) A network of superconducting gravimeters detects submicrogal coseismic gravity changes. Science 306:476–478CrossRefGoogle Scholar
  31. Juhel K, Ampuero J-P, Barsuglia M, Bernard P, Chassande-Mottin E, Fiorucci D et al (2018) Earthquake early warning using future generation gravity strain meters. J Geophys Res Solid Earth.  https://doi.org/10.1029/2018jb016698 Google Scholar
  32. Lavecchia G et al (2016) Ground deformation and source geometry of the 24 August 2016 Amatrice Earthquake (central Italy) investigated through analytical and numerical modeling of DInSAR measurements and structural–geological data. Geophys Res Lett 43(12):389–12398.  https://doi.org/10.1002/2016gl071723 Google Scholar
  33. Locati M, Camassi R, Rovida A, Ercolani E, Bernardini F, Castelli V, Caracciolo CH, Tertulliani A, Rossi A, Azzaro R, D’Amico S, Conte S, Rocchetti E (2016) DBMI15, the 2015 version of the Italian Macroseismic Database. Istituto Nazionale di Geofisica e Vulcanologia.  https://doi.org/10.6092/ingv.it-dbmi15
  34. Malagnini L, Lucente FP, De Gori P, Akinci A, Munafo I (2012) Control of pore fluid pressure diffusion on fault failure mode: insights from the 2009 L’Aquila seismic sequence. J Geophys Res 117:B05302.  https://doi.org/10.1029/2011jb008911 CrossRefGoogle Scholar
  35. Marson I, Morelli C (1977) First order gravity net in Italy. Boll Geod Sci Affin XXXVII 4:659–689Google Scholar
  36. Maruyama T (1964) Static elastic dislocations in an infinite and semi-infinite medium. Bull Earthq Res Inst Tokyo Univ 42:289–368Google Scholar
  37. Montagner J-P, Juhel K, Barsuglia M, Ampuero JP, Chassande-Mottin E, Harms J, Whiting B, Bernard P, Clévédé E, Lognonné P (2016) Prompt gravity signal induced by the 2011 Tohoku-Oki Earthquake. Nat Commun 7:13349.  https://doi.org/10.1038/ncomms13349 CrossRefGoogle Scholar
  38. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  39. Okubo S (1991) Potential and gravity changes raised by point dislocations. Geophys J Int 105:573–586CrossRefGoogle Scholar
  40. Okubo S (1992) Gravity and potential changes due to shear and tensile faults in a half-space. J Geophys Res 97:7137–7144CrossRefGoogle Scholar
  41. Pizzi A, Galadini F (2009) Pre-existing cross-structures and active fault segmentation in the northern-central Apennines (Italy). Tectonophysics 476(1–2):304–319.  https://doi.org/10.1016/j.tecto.2009.03.018 CrossRefGoogle Scholar
  42. Pollitz FF (1996) Coseismic deformation from earthquake faulting in a layered spherical Earth. Geophys J Int 125:1–4CrossRefGoogle Scholar
  43. Pollitz FF (1997) Gravitational viscoelastic postseismic relaxation on a layered spherical Earth. J Geophys Res 102(B8):17921–17941CrossRefGoogle Scholar
  44. Pondrelli S, Salimbeni S, Morelli A, Ekström G, Olivieri M, Boschi E (2010) Seismic moment tensors of the April 2009, L’Aquila (central Italy), earthquake sequence. Geophys J Int 180(1):238–242.  https://doi.org/10.1111/j.1365-246x.2009.04418.x CrossRefGoogle Scholar
  45. Press F (1965) Displacements, strains, and tilts at teleseismic distances. J Geophys Res 70:2395–2412CrossRefGoogle Scholar
  46. Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (eds) (2016) CPTI15, the 2015 version of the parametric catalogue of Italian earthquakes. Istituto Nazionale di Geofisica e Vulcanologia.  https://doi.org/10.6092/ingv.it-cpti15
  47. Segall P (2010) Earthquake and volcano deformations. Princeton University Press, PrincetonCrossRefGoogle Scholar
  48. Shen C, Li H, Tan H (2010) Simulation of co-seismic gravity change and deformation of Wenchuan Ms 8.0 Earthquake. Geod Geodyn 1:1–14.  https://doi.org/10.3724/sp.j.1246.2010.00008 CrossRefGoogle Scholar
  49. Sun W, Okubo S (1998) Surface potential and gravity changes due to internal dislocations in a spherical Earth II. Application to a finite fault. Geophys J Int 132:79–88CrossRefGoogle Scholar
  50. Sun W, Okubo S, Vanicek P (1996) Global displacement caused by dislocations in a realistic Earth model. J Geophys Res 101:8561–8577CrossRefGoogle Scholar
  51. Tinti E, Scognamiglio L, Michelini A, Cocco M (2016) Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice Earthquake estimated with rapid finite-fault inversion. Geophys Res Lett 43:10745–10752.  https://doi.org/10.1002/2016gl071263 CrossRefGoogle Scholar
  52. Toda S, Stein RS, Richards-Dinger K, Bozkurt S (2005) Forecasting the evolution of seismicity in southern California: animation built on earthquake stress transfer. J Geophys Res 110:B05S16.  https://doi.org/10.1029/2004jb003415 CrossRefGoogle Scholar
  53. Valentini A, Pace B, Boncio P, Visini F, Pagliaroli A, Pergalani F (2019) Definition of seismic input from fault-based PSHA: remarks after the 2016 central Italy earthquake sequence. Tectonics.  https://doi.org/10.1029/2018tc005086 Google Scholar
  54. Valerio E, Tizzani P, Carminati E, Doglioni C, Pepe S, Petricca P, De Luca C, Bignami C, Solaro G, Castaldo R, De Novellis V, Lanari R (2018) Ground deformation and source geometry of the 30 October 2016 Mw 6.5 Norcia Earthquake (central Italy) investigated through seismological data, DInSAR measurements, and numerical modelling. Remote Sens.  https://doi.org/10.3390/rs10121901 Google Scholar
  55. Vallée M, Ampuero JP, Juhel K, Bernard P, Montagner JP, Barsuglia M (2017) Observations and modeling of the elastogravity signals preceding direct seismic waves. Science 358(6367):1164–1168CrossRefGoogle Scholar
  56. Van Camp M, de Viron O, Avouac J-P (2016) Separating climate-induced mass transfers and instrumental effects from tectonic signal in repeated absolute gravity measurements. Geophys Res Lett 43:4313–4320.  https://doi.org/10.1002/2016gl068648 CrossRefGoogle Scholar
  57. Van Camp M, de Viron O, Watlet A, Meurers B, Francis O, Caudron C (2017) Geophysics from terrestrial time-variable gravity measurements. Rev Geophys 55:938–992.  https://doi.org/10.1002/2017rg000566 CrossRefGoogle Scholar
  58. Walsh JB (1969) Dip angle of faults as calculated from surface deformation. J Geophys Res 74(8):2070–2080CrossRefGoogle Scholar
  59. Wang H (1999) Surface vertical displacements potential, perturbations and gravity changes of a viscoelastic Earth model induced by internal point dislocations. Geophys J Int 137(2):429–440CrossRefGoogle Scholar
  60. Wang R, Lorenzo-Martin F, Roth F (2006) PSGRN/PSCMP—a new code for calculation co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput Geosci 32:527–541CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly
  2. 2.Institute of SeismologyChina Earthquake AdministrationWuhanChina

Personalised recommendations