Advertisement

International Journal of Earth Sciences

, Volume 108, Issue 6, pp 1879–1895 | Cite as

Petrology and U–Pb zircon age of the Variscan porphyroclastic Rand Granite at the southeastern margin of the Central Schwarzwald Gneiss Complex (Germany)

  • Rainer AltherrEmail author
  • Michael Hanel
  • Winfried H. Schwarz
  • Wolfhard Wimmenauer
Original Paper
  • 114 Downloads

Abstract

The Variscan Rand Granite as defined in this paper is a deformed I-type biotite granite that intruded along the southern-to-southeastern margin of the Central Schwarzwald Gneiss Complex. Former K-feldspar megacrysts (now porphyroclasts) of this K–Mg-rich alkali-calcic granite frequently show zonal crystallographic arrangement of mineral inclusions and are enclosed in a matrix of plagioclase, K-feldspar, quartz, biotite, apatite, zircon, and magnetite. Minor sphene and allanite are mostly altered. K-feldspar is orthoclase with perthitic exsolutions. Myrmekite is common and typically replaces marginal K-feldspar. Both feldspars show cataclastic and incipient ductile deformation that took place within the stability field of biotite (≥ 400 °C) as proven by grey varieties of Rand Granite with stable biotite. At most places, however, the Rand Granite shows a reddish colour, caused by late-stage chloritization of biotite and formation of hematite within K-feldspar. Furthermore, plagioclase became partially altered to sericite. This hydrothermal alteration took place at temperatures below the stability of biotite (< 400 °C). In situ ion probe U–Pb dating on zircon gave a concordant age of 330.9 ± 4.8 Ma (2σ), interpreted as the intrusion age of the Rand Granite. A large number of younger concordant to slightly discordant zircon ages between 309 and 90 Ma are interpreted to be due to episodic Pb loss during hydrothermal alteration. The Rand Granite apparently does not contain zircon domains older than the intrusion age and, furthermore, shows relatively high Zr contents (247–358 µg/g). These characteristics suggest high magma temperatures of at least 850–900 °C. The granitic magma most probably resulted from remelting of K-rich mafic to intermediate rocks in the middle crust at H2O-undersaturated conditions. Low Sr/Y ratios suggest a garnet-free residuum, which is only possible at pressures below ~ 0.9 GPa.

Keywords

Schwarzwald (Germany) Badenweiler–Lenzkirch Zone Rand Granite Variscan orogeny U–Pb dating Zircon thermometry 

Notes

Acknowledgements

We would like to thank Christian Soder (Heidelberg) for discussions and Ilona Fin and Oliver Wienand (Heidelberg) for preparing excellent thin sections. Alexander Varychev helped with the SEM work and Martin Karl and Reinhard Fritsche (Terrachem Analytical Laboratory, Mannheim) carried out the bulk-rock analyses by WDXRF (major elements). Trace-element analyses by laser ablation were performed by Helene Brätz (University of Erlangen-Nürnberg). Many thanks to Thomas Ludwig (Heidelberg) for the assistance during the SIMS measurements. Helpful comments by A. von Quadt and an anonymous reviewer are gratefully acknowledged. The authors acknowledge financial support from the Klaus Tschira Stiftung gGmbh, Heidelberg.

References

  1. Altherr R, Maass R (1977) Metamorphite am Südrand der Zentralschwarzwälder Gneisanatexitmasse zwischen Geschwend und Bernau. N Jb Geol Paläont Abh 154:129–154Google Scholar
  2. Altherr R, Henjes-Kunst F, Langer C, Otto J (1999) Interaction between crustal-derived felsic and mantle-derived mafic magmas in the Oberkirch Pluton (European Variscides, Schwarzwald, Germany). Contrib Mineral Petrol 137:304–322Google Scholar
  3. Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73Google Scholar
  4. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539Google Scholar
  5. Annen C, Blundy JD, Leuthold J, Stephen R, Sparks J (2015) Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230:206–221Google Scholar
  6. Barth MG, Foley SF, Horn I (2002) Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Res 113:323–340Google Scholar
  7. Beard JS, Lofgren GE (1989) Effect of water on the composition of partial melts of greenstone and amphibolite. Science 244:195–197Google Scholar
  8. Bédard JH (2006) Trace element partitioning in plagioclase feldspar. Geochim Cosmochim Acta 70:3717–3742Google Scholar
  9. Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334Google Scholar
  10. Breiter K, Gardenová MV, Kanický V, Vaculovič T (2013) Gallium and germanium geochemistry during magmatic fractionation and post-magmatic alteration in different types of granitoids: a case study from the Bohemian Massif (Czech Republic). Geologica Carathica 64:171–180Google Scholar
  11. Brockamp O, Schlegel A, Wemmer K (2015) Complex hydrothermal alteration and illite K–Ar ages in Upper Visean molasse sediments and magmatic rocks of the Variscan Badenweiler-Lenzkirch suture zone, Black Forest, Germany. Int J Earth Sci 104:683–702Google Scholar
  12. Brown M (2013) Granite: from genesis to emplacement. Geol Soc Am Bull 125:1079–1113Google Scholar
  13. Burgath K (1973) Kulmische Lahare im Südschwarzwald. Jb Mitt Oberrh Geol Ver NF 55:83–93Google Scholar
  14. Burgath K, Maass R (1973) Die variszische Entwicklung im südlichen Schwarzwald. Compte Rendu Sept Congr Intern Stratigr Géol CarbonifèreKrefeld, 23–28 August 1971 II:195–209Google Scholar
  15. Büsch W, Mehnert KR (1995) Ein Beispiel für Granitisation im Schwarzwald? (Umdeutung der ‘Feldspatisierungszone’ von Geschwend). Jh geol Landesamt Bad-Württ 35:7–24Google Scholar
  16. Castillo PR (2012) Adakite petrogenesis. Lithos 134–135:304–316Google Scholar
  17. Castro A (2014) The off-crust origin of granite batholiths. Geosci Front 5:63–75Google Scholar
  18. Ceccato A, Menegon L, Pennacchioni G, Grafulha Morales LF (2018) Myrmekite and strain weakening in granitoid mylonites. Solid Earth 9:1399–1419Google Scholar
  19. Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499Google Scholar
  20. Chappell BW, Bryant CJ, Wyborn D (2012) Peraluminous I-type granites. Lithos 153:142–153Google Scholar
  21. Chen F (2002) Garnet Sm–Nd and U–Pb systems: a case study of a granulite from the European Variscan belt. Chin Sci Bull 47:1284–1288Google Scholar
  22. Chen F, Todt W, Hann HP (2003) Zircon and garnet geochronology of eclogites from the Moldanubian Zone of the Black Forest, Germany. J Geol 111:207–222Google Scholar
  23. Chiaradia M (2015) Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective. Sci Rep 5:8115Google Scholar
  24. Clemens JD (1984) Water contents of silicic to intermediate magmas. Lithos 17:273–287Google Scholar
  25. Clemens JD (2018) Granitic magmas with I-type affinities, from mainly metasedimentary sources: the Harcourt batholith of southeastern Australia. Contrib Mineral Petrol 173:93Google Scholar
  26. Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306Google Scholar
  27. Clemens JD, Stevens G, Farina F (2011) The enigmatic sources of I-type granites: the peritectic connexion. Lithos 126:174–181Google Scholar
  28. Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne intrusive suite, California. Geology 32:433–436Google Scholar
  29. Collins WJ, Huang H-Q, Jiang X (2016) Water-fluxed crustal melting produces Cordilleran batholiths. Geology 44:143–146Google Scholar
  30. Cox RA, Dempster TJ, Bell BR, Rogers G (1996) Crystallization of the Shap Granite: evidence from zoned K-feldspar megacrysts. J Geol Soc Lond 153:625–635Google Scholar
  31. Díaz-Alvarado J (2017) Experimental early crystallization of K-feldspar in granitic systems. Implications on the origin of magmatic fabrics in granitic rocks. Geologica Acta 15:261–281Google Scholar
  32. Eisbacher GH, Lüschen E, Wickert F (1989) Crustal-scale thrusting and extension in the Hercynian Schwarzwald and Vosges, Central Europe. Tectonics 8:1–21Google Scholar
  33. Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840Google Scholar
  34. Frost BR, Frost CD (2008) A geochemical classification for feldspathic igneous rocks. J Petrol 49:1955–1969Google Scholar
  35. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048Google Scholar
  36. Gagnevin D, Daly JS, Poli G, Morgan D (2005) Microchemical and Sr isotopic investigation of zoned K-feldspar megacrysts: insights into the petrogenesis of a granite system and disequilibrium crystal growth. J Petrol 46:1689–1724Google Scholar
  37. Gao P, Zheng Y-F, Zhao Z-F (2016) Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis. Lithos 266–267:133–157Google Scholar
  38. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50Google Scholar
  39. Girardi JD, Patchett PJ, Ducea MN, Gehrels GE, Cecil MR, Rusmore ME, Woodsworth GJ, Pearson DM, Mantei C, Wetmore P (2012) Elemental and isotopic evidence for granitoid genesis from deep-seated sources in the Coast Mountains Batholith, British Columbia. J Petrol 53:1505–1536Google Scholar
  40. Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11Google Scholar
  41. Güldenpfennig M (1998) Zur geotektonischen Stellung unterkarbonischer Grauwacken und Vulkanite der Zone von Badenweiler-Lenzkirch (Südschwarzwald). Z Dt Geol Ges 149:213–232Google Scholar
  42. Guo X, Szenknect S, Mesbah A, Clavier N, Poinssot C, Wu D, Xu H, Dacheux N, Ewing RC, Navrotsky A (2016) Energetics of a uranothorite (Th1−xUxSiO4) solid solution. Chem Mater 28:7117–7124Google Scholar
  43. Hanel M, Lippolt HJ, Kober B, Wimmenauer W (1993) Lower Carboniferous granulites in the Schwarzwald basement near Hohengeroldseck (SW-Germany). Naturwissenschaften 80:25–28Google Scholar
  44. Hann HP, Sawatzki G (1998) Deckenbau und Sedimentationsalter im Grundgebirge des Südschwarzwaldes/SW-Deutschland. Z Dt Geol Ges 149:183–195Google Scholar
  45. Hann HP, Zedler H (2011) Geologische Karte von Baden-Württemberg 1:25000, sheet 8113 Todtnau, mit Erläuterungen. Landesamt für Geologie, Rohstoffe und Bergbau, Freiburg i. Br.Google Scholar
  46. Hann HP, Sawatzki G, Vaida M (1995) Chitinozoen und Arcritarchen des Ordoviziums aus metamorphen Grauwacken der Zone von Badenweiler-Lenzkirch, Schwarzwald, SW-Deutschland. N Jb Geol Paläont Mh 1995:375–383Google Scholar
  47. Hann HP, Chen F, Zedler H, Frisch W, Loeschke J (2003a) The Rand Granite in the southern Schwarzwald and its geodynamic significance in the Variscan belt of SW Germany. Int J Earth Sci 92:821–842Google Scholar
  48. Hann HP, Chen F, Zedler H, Sawatzki G (2003b) Zircon ages and geochemistry of metavolcanic layers from the northern Badenweiler-Lenzkirch Zone (southern Schwarzwald, Germany). N Jb Geol Paläont Abh 230:451–469Google Scholar
  49. Hegner E, Chen F, Hann HP (2001) Chronology of basin closure and thrusting in the internal zone of the Variscan belt in the Schwarzwald, Germany: evidence from zircon ages, trace element geochemistry, and Nd isotopic data. Tectonophysics 332:169–184Google Scholar
  50. Hegner E, Gruler M, Hann HP, Chen F, Güldenpfennig M (2005) Testing tectonic models with geochemical provenance parameters in greywacke. J Geol Soc Lond 162:87–96Google Scholar
  51. Hoenes D (1941) Magmatische Tätigkeit, Metamorphose und Migmatitbildung im Grundgebirge des südwestlichen Schwarzwaldes. N Jb Miner Geol Paläont I Abh 76:153–256Google Scholar
  52. Hoenes D (1948) Petrogenese im Grundgebirge des südlichen Schwarzwaldes. Contrib Mineral Petrol 1:121–202Google Scholar
  53. Hoenes D (1956) Der prägranitische Bau des Grundgebirges im südlichen Schwarzwald und seine Ableitung aus dem Fremdgesteinsinhalt der hybriden Granite. Contrib Mineral Petrol 5:272–288Google Scholar
  54. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314Google Scholar
  55. Holtz F, Johannes W (1994) Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos 32:149–159Google Scholar
  56. Holtz F, Johannes W, Tamic N, Behrens H (2001) Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications. Lithos 56:1–14Google Scholar
  57. Johnson BR, Glazner AF (2010) Formation of K-feldspar megacrysts in granodioritic plutons by thermal cycling and late-stage textural coarsening. Contrib Mineral Petrol 159:599–619Google Scholar
  58. Kalt A, Grauert B, Baumann A (1994a) Rb–Sr and U–Pb isotope studies on migmatites from the Variscan Schwarzwald (Germany): constraints on isotopic resetting during Variscan high-temperature metamorphism. J Metam Geol 12:667–680Google Scholar
  59. Kalt A, Hanel M, Schleicher H, Kramm U (1994b) Petrology and geochronology of eclogites from the Variscan Schwarzwald (F.R.G.). Contrib Mineral Petrol 115:287–302Google Scholar
  60. Kalt A, Altherr R, Hanel M (2000a) The Variscan basement of the Schwarzwald. Beih 2 Eur J Mineral 12:1–43Google Scholar
  61. Kalt A, Kober B, Pidgeon RT (2000b) Further time constraints on Variscan high-pressure metamorphism in the Schwarzwald (Germany). Beih 1 Eur J Mineral 12:91Google Scholar
  62. Kneidl V, Krebs W, Maass R (1982) Über Condontenfunde im Oberdevon von Tunau (Südschwarzwald). N Jb Geol Paläont Mh 1982:25–35Google Scholar
  63. Krecher M (1999) Ein Beitrag zur Kenntnis des Kulmkonglomerates in der westlichen Badenweiler-Lenzkirch Zone (Unterkarbon, Südschwarzwald). Ber Naturf Ges Freiburg i Br 88(89):277–296Google Scholar
  64. Krohe A, Eisbacher GH (1988) Oblique crustal detachment in the Variscan Schwarzwald, southwestern Germany. Int J Earth Sci 77:25–43Google Scholar
  65. Le Maitre RW (2002) Igneous rocks—a classification and glossary of terms Recommendations of the IUGS subcommission on the systematics of igneous rocks, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  66. Loeschke J, Güldenpfennig M, Hann HP, Sawatzki G (1998) Die Zone von Badenweiler-Lenzkirch (Schwarzwald): eine variskische Suturzone. Z Dt Geol Ges 149:187–212Google Scholar
  67. Ludwig KR (2012) User’s manual for isoplot 3.75—a geochronological toolkit for microsoft excel. Berkeley Geochronol Center Spec Publ 5:1–75Google Scholar
  68. Maass R, Prosch T, Schuler D (1990) The zone of Badenweiler-Lenzkirch—a Carboniferous accretionary wedge? N Jb Geol Paläont Mh 1990:717–734Google Scholar
  69. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Bull Geol Soc Am 101:635–643Google Scholar
  70. Marschall HR, Kalt A, Hanel M (2003) PT evolution of a Variscan lower-crustal segment: a study of granulites from the Schwarzwald, Germany. J Petrol 44:227–253Google Scholar
  71. McDonough WF, Sun S-S (1995) Composition of the Earth. Chem Geol 120:223–253Google Scholar
  72. Mehnert KR, Büsch W (1981) The Ba content of K-feldspar megacrysts in granites: a criterion for their formation. N Jb Miner Abh 140:221–252Google Scholar
  73. Mehnert KR, Büsch W (1985) The formation of K-feldpspar megacrysts in granites, migmatites and augengneisses. N Jb Miner Abh 151:229–259Google Scholar
  74. Menegon L, Pennacchioni G, Stünitz H (2006) Nucleation and growth of myrmekite during ductile shear deformation in metagranites. J Metam Geol 24:553–568Google Scholar
  75. Metz R, Rein G (1958) Erläuterungen zur geologisch-petrographischen Übersichtskarte des Südschwarzwaldes 1:50000. Lahr, Schauenburg, p 134Google Scholar
  76. Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532Google Scholar
  77. Montenari M, Maass R (1996) Die metamorphen Schiefer der Badenweiler–Lenzkirch-Zone/Südschwarzwald—Paläontologische Altersstellung (Acritarchen und Chitinozoen) und Tektonik. Ber Naturf Ges Freiburg i Br 84(85):33–79Google Scholar
  78. Montenari M, Servais T (2000) Early Paleozoic (Late Cambrian-Early Ordovician) acritarchs from the metasedimentary Baden-Baden–Gaggenau zone (Schwarzwald, SW Germany). Rev Palaeobot Palynol 113:73–85Google Scholar
  79. Montenari M, Servais T, Paris F (2000) Palynological dating (acritarchs and chitinozoans) of Lower Paleozoic phyllites from the Black Forest/southwestern Germany. C R Acad Sci Paris Sci Terre Planèt 330:493–499Google Scholar
  80. Moore JG, Sisson TW (2008) Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada batholith. Geosphere 4:387–400Google Scholar
  81. Moyen J-F (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112:556–574Google Scholar
  82. Padilla AJ, Gualda GAR (2016) Crystal-melt elemental partitioning in silicic magmatic systems: an example from the Peach Spring Tuff high-silica rhyolite, Southwest USA. Chem Geol 440:326–344Google Scholar
  83. Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination for the tectonic interpretations of granitic rocks. J Petrol 25:956–983Google Scholar
  84. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Cheney SP (1997) A compilation of new and published major an trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21:115–144Google Scholar
  85. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonou area, northern Turkey. Contrib Mineral Petrol 58:63–81Google Scholar
  86. Pressley RA, Brown M (1999) The Phillips Pluton, Maine, USA: evidence of heterogeneous crustal sources, and implications for granite ascent and emplacement mechanism in convergent orogens. Lithos 46:335–366Google Scholar
  87. Rudnick RL, Gao S (2014) Composition of the continental crust. In: Rudnick RL (ed) The crust, treatise on geochemistry, vol 3, 2nd edn. Elsevier Science, Oxford, pp 1–64Google Scholar
  88. Sawatzki G, Hann HP (2003) Geologische Karte von Baden-Württemberg 1:50000, Badenweiler-Lenzkirch-Zone, mit Erläuterungen. Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg, Freiburg i. Br.Google Scholar
  89. Schaltegger U (1997) Magma pulses in the Central Variscan Belt: episodic melt generation and emplacement during lithospheric thinning. Terra Nova 9:242–245Google Scholar
  90. Schaltegger U (2000) U–Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828Google Scholar
  91. Schmitz MD, Bowring SA, Ireland TR (2003) Evaluation of Duluth Complex anorthositic series (AS3) zircon as a U–Pb geochronological standard: new high-precision isotope dilution thermal ionization mass spectrometry results. Geochim Cosmochim Acta 67:3665–3672Google Scholar
  92. Schwarz WH, Trieloff M (2007) Intercalibration of 40Ar–39Ar age standards NL-25, HB3gr hornblende, GA1550, SB-3, HD-B1 biotite and BMus/2 muscovite. Chem Geol 242:218–231Google Scholar
  93. Silver LT, Deutsch S (1963) Uranium-lead variations in Zircons: a case study. J Geol 71:721–758Google Scholar
  94. Simpson C, Wintsch RP (1989) Evidence for deformation-induced K-feldspar replacement by myrmekite. J Metam Geol 7:261–275Google Scholar
  95. Sisson TW, Bacon CR (1992) Garnet/high silica rhyolite trace element partition coefficients measured by ion microprobe. Geochim Cosmochim Acta 56:2133–2136Google Scholar
  96. Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661Google Scholar
  97. Sittig E (1969) Zur geologischen Charakterisierung des Moldanubikums am Oberrhein (Südschwarzwald). Oberrhein Geol Abh 18:119–161Google Scholar
  98. Sittig E (1981) Evidence for wrench faulting within the Paleozoic Badenweiler-Lenzkirch zone (Southern Schwarzwald Mountains, W-Germany). N Jb Geol Paläont Mh 1981:421–448Google Scholar
  99. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221Google Scholar
  100. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362Google Scholar
  101. Stepanov A, Mavrogenes JA, Meffre S, Davidson P (2014) The key role of mica during igneous fractionation of tantalum. Contrib Mineral Petrol 167:1009Google Scholar
  102. Stern CR, Wyllie PJ (1981) Phase relationships of I-type granite with H2O to 35 kilobars: the Dinkey Lakes biotite-granite from the Sierra Nevada batholith. J Geophys Res 86:10412–10422Google Scholar
  103. Szenknect S, Costin DT, Clavier N, Mesbah A, Poinssot C, Vitorge P, Dacheux N (2013) From uranothorites to coffinite: a solid solution route to the thermodynamic properties of USiO4. Inorg Chem 52:6957–6968Google Scholar
  104. Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67:417–452Google Scholar
  105. Vaida M, Hann HP, Sawatzki G, Frisch W (2004) Ordovician and Silurian protolith ages of metamorphosed clastic sedimentary rocks from the southern Schwarzwald, SW Germany: a palynological study and its bearing on the Early Palaeozoic geotectonic evolution. Geol Mag 141:629–643Google Scholar
  106. Vernon RH (1986) K-feldspar megacrysts in granites—phenocrysts, not porphyroblasts. Earth Sci Rev 23:1–63Google Scholar
  107. Vernon RH (2010) Granites really are magmatic: using microstructural evidence to refute some obstinate hypotheses. J Virtual Explorer 35:1–36.  https://doi.org/10.3809/jvirtex.2011.00264 Google Scholar
  108. Vernon RH, Paterson SR (2008a) How late are K-feldspar megacrysts in granites? Lithos 104:327–336Google Scholar
  109. Vernon RH, Paterson SR (2008b) Mesoscopic structures resulting from cystal accumulation and melt movement in granites. Trans R Soc Edinb Earth Sci 97:369–381Google Scholar
  110. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276Google Scholar
  111. Vielzeuf D, Schmidt MW (2001) Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol 141:251–267Google Scholar
  112. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304Google Scholar
  113. Weinberg RF, Hasalová P (2015) Water-fluxed melting of the continental crust: a review. Lithos 212–215:158–188Google Scholar
  114. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419Google Scholar
  115. Whitney JA (1988) The origin of granite: the role and source of water in the evolution of granitic magmas. Geol Soc Am Bull 100:1886–1897Google Scholar
  116. Wickert E, Altherr R, Deutsch M (1990) Polyphase Variscan tectonics and metamorphism along a segment of the Saxothuringian-Moldanubian boundary: the Baden-Baden Zone, northern Schwarzwald (F.R.G.). Int J Earth Sci 79:627–647Google Scholar
  117. Wiedenbeck MP, Allé P, Corfu F, Griffin W, Meier M, Oberli F, Von Quadt A, Roddick J, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23Google Scholar
  118. Wiedenbeck MP, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard J-P, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skår O, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng Y-F (2004) Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res 28:9–39Google Scholar
  119. Wimmenauer W, Hanel M (1997) Die Fortsetzung der Randgranit-Assoziation nach Nordosten und Norden. Jh Geol Landesamt Baden Württemberg 37:7–24Google Scholar
  120. Wimmenauer W, Schreiner A (1990) Geologische Karte 1:25000 von Baden-Württemberg, sheet 8114 Feldberg, mit Erläuterungen. Landesamt für Geologie Baden Württemberg, Stuttgart, p 140Google Scholar
  121. Wu FY, Liu XC, Ji WQ, Wang JM, Yang L (2017) Highly fractionated granites: recognition and research. Sci China Earth Sci 60:1201–1219Google Scholar
  122. Wyllie PJ (1976) Granitic magmas: possible and impossible sources, water contents, and crystallization sequences. Can J Earth Sci 13:1007–1019Google Scholar
  123. Zhang C, Holtz F, Koepke J, Wolff PE, Ma C, Bédard JH (2013) Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth. Precambrian Res 231:206–217Google Scholar
  124. Ziegler PA, Wimmenauer W (2001) Possible glaciomarine diamictites in Lower Paleozoic series of the Southern Black Forest (Germany): implications for the Gondwana/Laurussia puzzle. N Jb Geol Paläont Mh 2001:500–512Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  • Rainer Altherr
    • 1
    Email author
  • Michael Hanel
    • 1
  • Winfried H. Schwarz
    • 1
    • 2
  • Wolfhard Wimmenauer
    • 3
  1. 1.Institut für GeowissenschaftenUniversität HeidelbergHeidelbergGermany
  2. 2.Klaus-Tschira-Labor für KosmochemieUniversität HeidelbergHeidelbergGermany
  3. 3.Institut für Geo- und Umweltnaturwissenschaften, Mineralogie und PetrologieUniversität FreiburgFreiburg im BreisgauGermany

Personalised recommendations