Advertisement

Dating of anatase-forming diagenetic reactions in Rotliegend sandstones of the North German Basin

  • S. SindernEmail author
  • V. Havenith
  • A. Gerdes
  • F. M. Meyer
  • D. Adelmann
  • A. Hellmann
Original Paper

Abstract

Diagenetic conditions controlling authigenic formation of anatase and in situ LA-ICP-MS U–Pb isotope dating of this phase are studied in Upper Rotliegend II sandstones from two wells in NW-Germany. Anatase grew after breakdown of detrital Ti-phases (e.g. ilmenite) although local scale Ti transport and mobilization from detrital clay-hematite coats or condensed hydrocarbons cannot be ruled out. The anatase-forming reaction marks the change from a regime of reducing conditions imposed by first hydrocarbon generation to oxidizing conditions, probably caused by influx of a fluid from evaporitic Zechstein rocks. This change in fluid influx is interpreted as response to enhanced normal faulting and halokinesis during accelerated burial in Triassic times. Isotope data of U and Pb indicate incorporation of crustal common Pb from Mesozoic pore fluids but precisely mark diagenetic growth of anatase at 224.3 + 5.1/− 5.6 Ma in a Tera-Wasserburg plot. Locally, U–Pb isotope signatures are consistent with either additional incorporation of U and Pb from detrital precursor phases or with uptake of uranogenic Pb from hydrocarbons generated prior to 224 Ma. Anatase is shown to be a valuable authigenic phase suitable for U–Pb chronometry of diagenetic events, which appears to be unaffected by protracted burial and temperatures exceeding temperatures of crystallization.

Keywords

U–Pb dating Anatase Diagenesis Sandstone Rotliegend North-West German Basin 

Notes

Acknowledgements

This paper is a late result of Wintershall and RWTH Aachen University Tight Gas Initiative. We thank Wintershall Holding GmbH for supporting this project as well as for providing samples and data. The valuable help of Thomas Derichs and Roman Klinghardt during preparation of thin sections and performance of electron microprobe analyses is gratefully acknowledged. The manuscript was improved by helpful reviews by R. Gaupp and A. Willner.

References

  1. Arendt H, Hess JC, Wemmer K (1991) K/Ar-Altersdatierung an authigenen Illiten des Gasfeldes Thönse. Niedersächsische Akademie der Geowissenschaften - Veröffentlichungen 6:108–114 (in German) Google Scholar
  2. Bachmann GH, Hoffmann N (1997) Development of the Rotliegend basin in Northern Germany. Geol Jahrb D 103:9–31Google Scholar
  3. Bracciali L, Parrish RR, Horstwood MSA, Condon DJ, Najman Y (2013) U–Pb LA-(MC)-ICP-MS dating of rutile: new reference materials and applications to sedimentary provenance. Chem Geol 347:82–101CrossRefGoogle Scholar
  4. Burisch M, Walter BF, Gerdes A, Lanz M, Markl G (2018) Late stage anhydrite–gypsum–siderite–dolomite–calcite assemblages record the transition from a deep to a shallow hydrothermal system in the Schwarzwald mining district, SW Germany. Geochim Cosmochim Acta 223:259–278CrossRefGoogle Scholar
  5. Clauer N, Zwingmann H, Chaudhuri S (1996) Isotopic (K-Ar and oxygen) constraints on the extent and importance of the Liassic hydrothermal activity in Western Europe. Clay Miner 31:301–318CrossRefGoogle Scholar
  6. Clauer N, Rousset D, Srodon J (2004) Modeled shale and sandstone burial diagenesis based on the K–Ar systematics of illite-type fundamental particles. Clays Clay Miner 52:576–588CrossRefGoogle Scholar
  7. Coogan LA, Parrish RR, Roberts NMW (2016) Early hydrothermal carbon uptake by the upper oceanic crust: insight from in situ U-Pb dating. Geology 44:147–150CrossRefGoogle Scholar
  8. Finlay AJ, Selby D, Osborne MJ (2011) Re–Os geochronology and fingerprinting of United Kingdom Atlantic margin oil; temporal implications for regional petroleum systems. Geology 39:475–478CrossRefGoogle Scholar
  9. Finlay AJ, Selby D, Merrick E (2012) Rhenium–osmium isotope geochronology—dating the finer aspect of petroleum systems. Scand Oil-Gas Mag 3(4):18–20Google Scholar
  10. Fischer C, Dunkl I, von Eynatten H, Wijbrans JR, Gaupp R (2012) Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany). Geol Mag 149:827–840CrossRefGoogle Scholar
  11. Fuchs S, Schumann D, Williams-Jones AE, Vali H (2015) The growth and concentration of uranium and titanium minerals in hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Chem Geol 393–394:55–66CrossRefGoogle Scholar
  12. Gast R, Gundlach T (2006) Permian strike slip and extensional tectonics in Lower Saxony, Germany. Z dt Ges Geowiss 157:41–56Google Scholar
  13. Gaupp R, Matter A, Platt J, Ramseyer K, Walzebuck J (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) Gas Reservoirs, Northwest Germany. Am Assoc Petrol Geol Bull 77:1111–1128Google Scholar
  14. Gaupp R, Solms M, Baunack C, Pudlo D, Oncken O, Krawczyk C, Tanner D, Litke R, Schwarzer D, Trappe H, Schubarth-Engelschal J, Samiee R (2005) Tight gas reservoirs—natural gas for the future, Introduction. In: Gaupp R (ed) DGMK Research Report 593-8 Paleo oil- and gasfields in the Rotliegend of the North German Basin: Effects upon hydrocarbon reservoir quality. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V, Hamburg, pp 01–06Google Scholar
  15. Gerdes A, Zeh A (2006) Combined U-Pb and Hf isotope LA-(MC) ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  16. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration - new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Limpopo Belt. Chem Geol 261:230–243CrossRefGoogle Scholar
  17. Glaser M (2001) Genese der Erdgaslagerstätten der südlichen deutschen Nordsee. Dissertation University of Hamburg, GermanyGoogle Scholar
  18. Glennie KW (1990) Introduction to the petroleum geology of the North Sea. Blackwell Scientific Publications, OxfordGoogle Scholar
  19. Glennie KW (2001) Exploration activities in the Netherlands and North-West Europe since Groningen. Geologie en Mijnbouw/Neth J Geosci 80:33–52Google Scholar
  20. Godeau N, Deschamps P, Guihou A, Leonide P, Tendil A, Gerdes A, Hamelin B, Girard J-P (2018) U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: case of the Urgonian Limestone, France. Geology 46:247–250CrossRefGoogle Scholar
  21. Harlavan Y, Sandler A (2010) Steps toward dating early diagenetic K-feldspar by the 40Ar–39Ar method. Sediment Geol 229:254–267CrossRefGoogle Scholar
  22. Harris M, Coggon RM, Teagle DAH, Roberts NMW, Parrish RR (2014) Laser ablation MC-ICP-MS U/Pb geochronology of ocean basement calcium carbonate veins. American Geophysical Union 2014 fall meetingGoogle Scholar
  23. Hartmann B (1997) Mobilität von Seltenen-Erd-Elementen und deren Fixierung in Karbonatphasen am Beispiel von Rotliegend-Sandsteinen des Norddeutschen Beckens. Dissertation University of Mainz, Germany (in German)Google Scholar
  24. Hasner K (2004) Untersuchungen an Hämatit-Tonmineralkrusten in Rotliegendsandsteinen des Norddeutschen Beckens. Diploma-Thesis, Friedrich-Schiller-University Jena, Germany (in German) Google Scholar
  25. Havenith VMJ (2012) Diageneseevolution von Ober-Rotliegend II Sandsteinen eines Tight-Gas Feldes in Ostfriesland (NW Deutschland). Dissertation RWTH-Aachen University (in German) Google Scholar
  26. Ixer RA, Turner P, Waugh B (1979) Authigenic iron and titanium oxides in Triassic red beds: (St. Bees Sandstone), Cumbria, Northern England. Geol J 14:179–192CrossRefGoogle Scholar
  27. Janousek V, Gerdes A (2003) Timing the magmatic activity within the Central Bohemian Pluton, Czech Republik: conventional U-Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. J Czech Geol Soc 48:70–71Google Scholar
  28. Karnin W-D, Gast R, Bärle C, Clever B, Kühn M, Sommer J (2006) Play types, structural history and distribution of Middle Buntsandstein gas fields in NW Germany: observations and their genetic interpretation. Z dt Ges Geowissensch 157:121–134Google Scholar
  29. Kooijman E, Mezger K, Berndt J (2010) Constraints on the U–Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth Planet Sci Lett 293:321–330CrossRefGoogle Scholar
  30. Lander R, Bloch S, Mehta S, Atkinson CD (1991) Burial diagenesis of paleosols in the giant Yacheng gas field, People’s Republic of China: bearing on illite reaction pathways. J Sediment Petrol 61:256–268Google Scholar
  31. Lanson B, Beaufort D, Berger G, Baradat J, Lacharpagne J-C (1996) Illitization of diagenetic kaolinite-to-dickite conversion series: late-stage diagenesis of the Lower Permian Rotliegend sandstone reservoir, offshore of The Netherlands. J Sediment Res 66:501–518Google Scholar
  32. Lee M (1996) Diagenesis of the Rotliegend sandstones of Southern Ostfriesland, Germany. Unpublished report, DallasGoogle Scholar
  33. Lerz H (1968) Über eine hydrothermale Paragenese von Anatas, Brookit und Rutil vom Dorfer Keesfleck. Prägraten/Osttirol N Jb Miner Mh 11:414–420Google Scholar
  34. Li Q, Parrish RR, Horstwood MSA, McArthur JM (2014) U–Pb dating of cements in Mesozoic ammonites. Chem Geol 376:76–83CrossRefGoogle Scholar
  35. Liewig N, Clauer N (2000) K-Ar dating of varied microtextural illite in Permian gas reservoirs, northern Germany. Clay Miner 35:271–281CrossRefGoogle Scholar
  36. Littke R, Brauckmann FJ, Radke M, Schaefer RG (1996) Solid bitumen in Rotliegend gas reservoirs in northern Germany: implications for their thermal and filling history. Zbl Geol Paläon Part I 11(12):1275–1291Google Scholar
  37. Littke R, Bayer U, Gajewski D (2005) Dynamics of sedimentary basins: the example of the Central European Basin system. Int J Earth Sci 94:779–781CrossRefGoogle Scholar
  38. Ludwig KR (1998) On the treatment of concordant uranium-lead ages. Geochim Cosmochim Acta 62:665–676CrossRefGoogle Scholar
  39. Ludwig KR (2001) ISOPLOT/Ex, version 2.49: a geochronological toolkit for Microsoft Excel, vol 1a. Berkeley Geochronology Center, Special PublicationGoogle Scholar
  40. Mader D (1980) Authigener Rutil im Buntsandstein der Westeifel. N Jb Miner Mh 3:97–108Google Scholar
  41. Mangenot X, Gerdes A, Marta G, Bonifacie M, Rouchon V (2016) In situ U–Pb dating of carbonate by LA-ICP-(SC)-MS: context, results and perspectives. Sciencesconf.org:rst2016-caen:114888Google Scholar
  42. Mangenot X, Gasparrini M, Gerdes A, Bonifacie M, Rouchon V (2018) An emerging thermo-chronometer for carbonate-bearing rocks: ∆47/(U–Pb). Geology 46:1067–1070CrossRefGoogle Scholar
  43. Mark DF, Parnell J, Kelley SP, Lee M, Sherlock SC, Carr A (2005) Dating of multistage fluid flow in sandstones. Science 309:2048–2050CrossRefGoogle Scholar
  44. Mark DF, Kelley SP, Lee MR, Parnell J, Sherlock SC, Brown DJ (2008) Ar–Ar dating of authigenic K-feldspar: quantitative modelling of radiogenic argon-loss through subgrain boundary networks. Geochim Cosmochim Acta 72:2695–2710CrossRefGoogle Scholar
  45. Mark DF, Parnell J, Kelley SP, Lee MR, Sherlock SC (2010) 40Ar/39Ar dating of oil generation and migration at complex continental margins. Geology 38:75–78CrossRefGoogle Scholar
  46. Meier A (2012) Experimentelle Untersuchungen zu Reaktionen von Erdölverbindungen (n-Alkanen) mit Hämatit-Kutanen in klastischen Erdölspeichergesteinen. Dissertation Friedrich-Schiller-Universität Jena (in German) Google Scholar
  47. Meinhold G (2010) Rutile and its applications in earth sciences. Earth Sci Rev 102:1–28CrossRefGoogle Scholar
  48. Mezger K, Hanson GN, Bohlen SR (1989) High-precision U–Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth Planet Sci Lett 96:106–118CrossRefGoogle Scholar
  49. Millonig LJ, Gerdes A, Groat LA (2013) The effect of amphibolite facies metamorphism on the U–Th–Pb geochronology of accessory minerals from meta-carbonatites and associated meta-alkaline rocks. Chem Geol 353:199–209CrossRefGoogle Scholar
  50. Morad S (1988) Diagenesis of titaniferous minerals in Jurassic sandstones from the Norwegian Sea. Sediment Geol 57:17–40CrossRefGoogle Scholar
  51. Morad S, Aldahan AA (1986) Alteration of detrital Fe–Ti oxides in sedimentary rocks. Geol Soc Am Bull 97:567–578CrossRefGoogle Scholar
  52. Morad S, Aldahan AA (1987) Diagenetic “replacement” of feldspars by titanium oxides in sandstones. Sediment Geol 51:147–153CrossRefGoogle Scholar
  53. Morad S, Ketzer JM, De Ros LF (2000) Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology 47:95–120CrossRefGoogle Scholar
  54. Neunzert GH, Gaupp R, Littke R (1996) Absenkungs- und Temperaturgeschichte paläozoischer und mesozoischer Formationen im Nordwestdeutschen Becken. Z dt Geol Ges 147:183–208 (in German)Google Scholar
  55. Parnell J (1994) Hydrocarbons and other fluids: paragenesis, interactions and exploration potential inferred from petrographic studies. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication No. 78, pp 275–291Google Scholar
  56. Parnell J (1998) Introduction: Approaches to dating and duration of fluid flow and fluid-rock interaction. In: Parnell J (ed) Dating and duration of fluid flow and fluid-rock interaction. Geological Society London Special Publication 144, pp 1–8Google Scholar
  57. Parnell J (2004) Titanium mobilization by hydrocarbon fluids related to sill intrusion in a sedimentary sequence, Scotland. Ore Geol Rev 24:155–167CrossRefGoogle Scholar
  58. Parnell J, Swainbank I (1990) Pb–Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales. Geology 18:1028–1030CrossRefGoogle Scholar
  59. Petersson J, Eliasson T (1997) Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos 42:123–146CrossRefGoogle Scholar
  60. Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone, 2nd edn. Springer, New York, p 553CrossRefGoogle Scholar
  61. Platt JD (1993) Controls on clay mineral distribution and chemistry in the Early Permian Rotliegend of Germany. Clay Miner 28:393–416CrossRefGoogle Scholar
  62. Platt JD (1994) Geochemical evolution of pore waters in the Rotliegend (Early Permian) of northern Germany. Mar Pet Geol 11:66–78CrossRefGoogle Scholar
  63. Roberts NMW, Walker RJ (2016) U–Pb geochronology of calcite-mineralized faults; absolute timing of rift-related fault events on the Northeast Atlantic margin. Geology 44:531–534CrossRefGoogle Scholar
  64. Rooney AD, Selby D, Lewan MD, Lillis PG, Houzay J-P (2012) Evaluating Re–Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments. Geochim Cosmochim Acta 77:275–291CrossRefGoogle Scholar
  65. Sakurai K, Mizusawa M (2010) X-ray diffraction imaging of anatase and rutile. Anal Chem 82:3519–3522CrossRefGoogle Scholar
  66. Sandler A, Harlavan Y (2006) Early diagenetic illitization of illite–smectite in Cretaceous sediments (Israel): evidence from K–Ar dating. Clay Miner 41:637–658CrossRefGoogle Scholar
  67. Schmitt AK, Zack T (2012) High-sensitivity U–Pb rutile dating by secondary ion mass spectrometry (SIMS) with an O2 + primary beam. Chem Geol 332–333:65–73CrossRefGoogle Scholar
  68. Schmidt Mumm A, Wolfgramm M (2004) Fluid systems and mineralization in the north German and polish basin. Geofluids 4:315–328CrossRefGoogle Scholar
  69. Schöner (2006) Comparison of Rotliegend sandstone diagenesis from the northern and southern margin of the North German Basin, and implications for the importance of organic maturation and migration. Dissertation Friedrich-Schiller-University Jena, GermanyGoogle Scholar
  70. Schwarzer D, Littke R (2007) Petroleum generation and migration in the ‘Tight Gas’ area of the German Rotliegend natural gas play: a basin modelling study. Pet Geosci 13:37–62CrossRefGoogle Scholar
  71. Seewald JS (2003) Organic–inorganic interactions in petroleum-producing sedimentary basins. Nature 426:327–333CrossRefGoogle Scholar
  72. Selby D, Creaser RA (2005) Direct radiometric dating of hydrocarbon deposits using rhenium–osmium isotopes. Science 308:1293–1295CrossRefGoogle Scholar
  73. Smith SJ, Stevens R, Liu S, Li G, Navrotsky A, Boerio-Goates J, Woodfield BF (2009) Heat capacities and thermodynamic functions of TiO2 anatase and rutile: analysis of phase stability. Am Min 94:236–243CrossRefGoogle Scholar
  74. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  75. Stollhofen H, Bachmann GH, Barnasch J, Bayer U, Beutler G, Franz M, Kästner M, Legler B, Mutterlose J, Radies D (2008) Upper Rotliegend to Early Cretaceous basin development. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins; the Central European Basin system. Springer, Berlin, pp 181–210Google Scholar
  76. Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J (Nat Sci) 42:357–361Google Scholar
  77. Timmermann H, Stedra V, Gerdes A, Noble SR, Parrish RP, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Marianske Lazne Complex, Czech Republic. J Petrol 45:1311–1338CrossRefGoogle Scholar
  78. Triebold S, Luvizotto GL, Tolosana-Delgado R, Zack T, von Eynatten H (2011) Discrimination of TiO2 polymorphs in sedimentary and metamorphic rocks. Contrib Min Pet 161:581–596CrossRefGoogle Scholar
  79. Uffmann AK, Littke R (2011) 3D petroleum systems modelling of the North German Basin. First Break 29:49–63CrossRefGoogle Scholar
  80. Vackiner AA (2012) Sedimentary facies reconstruction and kinematic restoration of an Upper Permian tight gas field, north-western Germany. Dissertation RWTH-Aachen UniversityGoogle Scholar
  81. Vackiner AA, Antrett P, Stollhofen H, Back S, Kukla PA, Bärle C (2011) Syndepositional tectonic controls and palaeo-topography of a Permian tight gas reservoir in NW Germany. J Pet Geol 34:411–428CrossRefGoogle Scholar
  82. Vackiner AA, Antrett P, Strozyk F, Back S, Kukla P, Stollhofen H (2013) Salt kinematics and regional tectonics across a Permian gas field: a case study from East Frisia, NW Germany. Int J Earth Sci 102:1701–1716CrossRefGoogle Scholar
  83. Van Wees J-D, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Pet Geol 17:43–59CrossRefGoogle Scholar
  84. Vry JK, Baker JA (2006) LA-MC-ICPMS Pb–Pb dating of rutile from slowly cooled granulites: confirmation of the high closure temperature for Pb diffusion in rutile. Geochim Cosmochim Acta 70:1807–1820CrossRefGoogle Scholar
  85. Waldmann S (2011) Geological and mineralogical investigation of Rotliegend gas reservoirs in the Netherlands and their potential for CO2 storage. Dissertation Friedrich-Schiller-University JenaGoogle Scholar
  86. Warsitzka M, Kley J, Jähne-Klingberg F, Kukowski N (2017) Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes. Int J Earth Sci 106:131–155CrossRefGoogle Scholar
  87. Weibel R (1998) Diagenesis in oxidising and locally reducing conditions—an example from the Triassic Skagerrak Formation, Denmark. Sediment Geol 121:259–276CrossRefGoogle Scholar
  88. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Min 95:185–187CrossRefGoogle Scholar
  89. Worden RH, Morad S (2003) Clay minerals in sandstones: controls on formation distribution and evolution. Int Assoc Sedimentol Spec Publ 34:3–41Google Scholar
  90. Yau YC, Peacor DR, Essene EJ (1987) Authigenic anatase and titanite in shales from the Salton Sea Geothermal Field, California. N Jb Min Mh 10:441–452Google Scholar
  91. Yijie Z, Jian C, Wenxuan H (2010) Timing of petroleum accumulation and the division of reservoir-forming assemblages, Junggar Basin, NW China. Petrol Explor Dev 37:257–262CrossRefGoogle Scholar
  92. Zanoni G, Segvic B, Moscariello A (2016) Clay mineral diagenesis in Cretaceous clastic reservoirs from West African passive margins (the South Gabon basin) and its impact on regional geology and basin evolution history. Appl Clay Sci 134:186–209CrossRefGoogle Scholar
  93. Ziegler PA (1978) North-Western Europe: tectonics and basin development. Geologie en Mijnbouw 57:589–626Google Scholar
  94. Ziegler K (2006) Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas. Clay Miner 41:355–393CrossRefGoogle Scholar
  95. Zwingmann H, Clauer N, Gaupp R (1998) Timing of fluid flow in a sandstone reservoir of the north German Rotliegend (Permian) by K-Ar dating of related hydrothermal illite. In: Parnell J (ed) Dating and duration of fluid flow and fluid-rock interaction, vol 144. Geological Society, London, Special Publications, pp 91–106Google Scholar
  96. Zwingmann H, Clauer N, Gaupp R (1999) Structure-related geochemical (REE) and isotopic (K–Ar, Rb–Sr, δ18O) characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, northern Germany). Geochim Cosmochim Acta 63:2805–2823CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Institute of Applied Mineralogy and Economic GeologyRWTH Aachen UniversityAachenGermany
  2. 2.ShinEtsuSE Tylose GmbH & Co. KGWiesbadenGermany
  3. 3.Institut für GeowissenschaftenGoethe University FrankfurtFrankfurtGermany
  4. 4.Wintershall Holding GmbHKasselGermany

Personalised recommendations