Advertisement

First U–Pb LA-ICP-MS zircon ages assessed from a volcano-sedimentary complex of the mid-European Variscides (Pennsylvanian, Flöha Basin, SE Germany)

  • Frank LöcseEmail author
  • Ulf Linnemann
  • Gitta Schneider
  • Mathias Merbitz
  • Ronny Rößler
Original Paper
  • 11 Downloads

Abstract

Nine radiometric ages constrained by U–Pb isotopes from magmatic zircon grains are provided for different volcanic rocks from the Flöha Basin and its surroundings. For most of them, this is the first reliable data to correlate with the International Chronostratigraphic Chart. Measurements were obtained with LA-ICP-MS and revealed middle Pennsylvanian ages (311–308 Ma) allowing first consistent correlation to other Variscan volcano-sedimentary basins of the Saxo-Thuringian and Teplá Barrandian zones. The Obermühlbach Volcano, formerly considered to be early Permian in age, is shown to be of middle Pennsylvanian age. In contrast, the dykes from Metzdorf village and Oederan have shown to be not Pennsylvanian, but rather of early Permian age. Biostratigraphic data obtained from the Flöha Formation macroflora coincide with the new isotopic evidence which encompasses a likely time span from the middle to late Bolsovian (Westphalian C) up to the Bolsovian–Asturian boundary. The results not only yield a modified picture of the Flöha Formation and their intercalated pyroclastics. As new insights challenge previous geological mapping they contribute to the understanding of the complex volcano-tectonic processes in the type area of the Saxo-Thuringian zone of the European Variscides.

Keywords

Pyroclastic rock Stratigraphy Variscides Saxo-Thuringian Zone U–Pb LA-ICP-MS zircon ages Flöha Basin 

Notes

Acknowledgements

We would like to thank J.W. Schneider for many useful discussions and for sharing his rich experience concerning the late Paleozoic tectonomagmatic, palaeogeographic, climatic and biotic processes in the Variscan orogenic belt. This research was funded by the Deutsche Forschungsgemeinschaft (DFG Grants RO 1273/3-1 RO 1273/4-1 to RR) and additionally supported by the Museum für Naturkunde Chemnitz and the Senckenberg Naturhistorische Sammlungen Dresden.

Supplementary material

531_2019_1684_MOESM1_ESM.doc (2 mb)
Supplementary material 1 (DOC 2080 KB)

References

  1. Andreas D (2014) Der Thüringer Wald im Zeitraum der Stefan-Unterperm-Entwicklung - ein Abschnitt der Zentraleuropäischen N-S-Riftzone innerhalb des Mitteleuropäischen Großschollenscharniers. Freiberger Forschungshefte C 547:1–181Google Scholar
  2. Benek R (1991) Aspekte einer Volumenbilanz paläovulkanischer Förderprodukte - Beispiel Teplice-Rhyolith (Ostdeutschland). Z geol Wiss 19:379–389Google Scholar
  3. Benek R (1995) Late Variscan calderas/volcanotectonic depressions in eastern Germany. Terra Nostra 7(95):16–19Google Scholar
  4. Cisneros JC, Marsicano C, Anglieczyk KD, Smith RMH, Richter M, Fröbisch J, Kammerer CF, Sadleir RW (2015) New Permian fauna from tropical Gondwana. Nature.  https://doi.org/10.1038/ncomms9676 Google Scholar
  5. Cleal CJ, van Waveren IM (2012) A reappraisal of the Carboniferous macrofloras of the Zonguldak—Amasra Coal Basin, north-western Turkey. Geologica Croatica 65(3):283–297CrossRefGoogle Scholar
  6. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, vol 53, pp 469–500Google Scholar
  7. Davydov VI, Korn D, Schmitz MD (2012) The carboniferous period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 603–651CrossRefGoogle Scholar
  8. Faupl P (2000) Historische geologie. Facultas, Wien, pp 1–277Google Scholar
  9. Frei D, Gerdes A (2009) Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem Geol 261:261–270CrossRefGoogle Scholar
  10. Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) (2012) The Geologic Time Scale 2012, vol 2. Elsevier, Amsterdam, pp 1–1144Google Scholar
  11. Gäbert C, Sauer A, Siegert TH, Rothpletz A (1907) Erläuterungen zur geologischen Spezialkarte des Königreichs Sachsen. Section Augustusburg-Flöha. Blatt 97, 2. Aufl., W. Engelmann, Leipzig, 1–99Google Scholar
  12. Gaitzsch BG, Rößler R, Schneider JW, Schretzenmayr S (1998) Neue Ergebnisse zur Verbreitung potentieller Muttergesteine im Karbon der variscischen Vorsenke in Nordostdeutschland. Geol Jb A 149:25–58Google Scholar
  13. Gehmlich M, Linnemann U, Tichomirowa M, Gaitzsch B, Kroner U, Bombach K (2000) Geochronologie oberdevonischer bis unterkarbonischer Magmatite der Thüringischen und Bayerischen Faziesreihe sowie variszischer Deckenkomplexe und der Frühmolasse von Borna-Hainichen (Saxothuringisches Terrane). Z geol Wiss 151:337–363Google Scholar
  14. Geinitz HB (1854) Darstellung der Flora des Hainichen-Ebersdorfer und des Flöhaer Kohlenbassins im Vergleich zu der Flora des Zwickauer Steinkohlengebietes. Gekrönte Preisschrift der Fürstl. Jablonowskischen Gesellschaft, pp 1–80Google Scholar
  15. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibrium of zircon in aqueous fluids and melts. Elements 3(1):43–50CrossRefGoogle Scholar
  16. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analysis of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  17. Gerdes A, Zeh A (2009) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analysis of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  18. Geršlová E, Goldbach M, Geršl M, Skupien P (2016) Heat flow evolution, subsidence and erosion in Upper Silesian Coal Basin, Czech Republic. Int J Coal Geol 154–155:30–42CrossRefGoogle Scholar
  19. Gothan W (1932) Die Altersstellung des Karbons von Flöha i. Sa. im Karbonprofil aufgrund der Flora. Abh sächs geol Landesamt 12:15–19Google Scholar
  20. Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Mineral Pet 84:66–72CrossRefGoogle Scholar
  21. Hess JC, Lippolt HJ, Holub VM, Pešek J (1985) Isotopic ages of two Westphalian C tuffs a contribution to the Upper Carboniferous time scale. Terra Cognita 5:236–237Google Scholar
  22. Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous–Permian volcanic evolution in Central Europe U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci (Geol Rundschau) 102:73–99CrossRefGoogle Scholar
  23. Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P, Bowring JF, Condon DJ, Schoene B (2016) Community-derived standards for LA-ICP-MS U–Th–Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res 40:311–332CrossRefGoogle Scholar
  24. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, vol 53, pp 1–25Google Scholar
  25. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  26. Jentsch F (1981a) Zur Minerogenie glasiger Subsequenzvulkanite im sächsischen Raum. Freiberger Forschungshefte C 361:1–67Google Scholar
  27. Jentsch F (1981b) Der Quarzporphyr von Mühlbach—ein geologisches Naturdenkmal. Veröff Mus Naturk Chemnitz 11:3–13Google Scholar
  28. Jentsch F (1996) Zur Problematik der Rhyolithoide im Flöhaer Raum. Veröff Mus Naturk Chemnitz 19:85–96Google Scholar
  29. Klemd R (2010) Early Variscan allochthonous domains: the Münchberg Complex, Frankenberg, Wildenfels, and Gjóry Sowie. In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart Science Publishers, Stuttgart, pp 221–232Google Scholar
  30. Kotas A (1995) Structural evolution of the Upper Silesian Coal Basin (Poland). In: Essobedo IL, Granados LF, Meléndez B, Pignatelli R, Rey R, Wagner RH (eds) CR 10. Congr Int Strat Geol Carbonif. Inst Geol Him España 3, Madrid, pp 459–469Google Scholar
  31. Kroner U, Hahn T (2004) Sedimentation, Deformation und Metamorphose im Saxothuringikum während der variszischen Orogenese: Die komplexe Entwicklung von Nord-Gondwana während kontinentaler Subduktion und schiefer Kollision. In: Linnemann U (ed) Das Saxothuringikum. Abriss der präkambrischen und paläozoischen Geologie von Sachsen und Thüringen. Geologica Saxonica 48/49:137–150Google Scholar
  32. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329CrossRefGoogle Scholar
  33. Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian zone—heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust. Geol Soc Am Spec Pap 423:153–172Google Scholar
  34. Linnemann U, Romer RL (eds) (2010) Pre-mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart Science Publishers, StuttgartGoogle Scholar
  35. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian Orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian Zone, NE Bohemian massif, Germany). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan Collision. Geological Society of America Special Papers, vol 423, pp 61–96Google Scholar
  36. Linnemann U, Drost K, Gerdes A, Jeffries T, Romer RL (2008) The Bohemian Massif (Chap. 3. The Cadomian Orogeny). In: McCann T (ed) The geology of Central Europe. The Geological Society of London, London, pp 121–147Google Scholar
  37. Linnemann U, Romer RL, Gerdes A, Jeffries TE, Drost K, Ulrich J (2010a) The Cadomian Orogeny in the Saxo-Thuringian Zone. In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart Science Publishers, Stuttgart, pp 33–58Google Scholar
  38. Linnemann U, Hofmann M, Romer RL, Gerdes A (2010b) Transitional stages between the Cadomian and Variscan Orogenies: Basin development and tectonomagmatic evolution of the southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf). In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart Science Publishers, Stuttgart, pp 59–98Google Scholar
  39. Löcse F, Rößler R (2018) Zur geologisch-paläontologischen Forschungsgeschichte des Flöha-Beckens. Ein Mosaikstein zur historischen Entwicklung der Geowissenschaften in Sachsen. Geohistorische Blätter 29:1–24Google Scholar
  40. Löcse F, Meyer J, Klein R, Linnemann U, Weber J, Rößler R (2013) Neue Florenfunde in einem Vulkanit des Oberkarbons von Flöha—Querschnitt durch eine ignimbritische Abkühlungseinheit. Veröff Mus Naturk Chemnitz 36:85–142Google Scholar
  41. Löcse F, Linnemann U, Schneider G, Annacker V, Zierold T, Rößler R (2015) 200 Jahre Tubicaulis solenites (Sprengel) Cotta. Sammlungsgeschichte, Paläobotanik & Geologie eines oberkarbonischen Baumfarn-Unikats aus dem Schweddey-Ignimbrit vom Gückelsberg bei Flöha. Veröff Mus Naturk Chemnitz 38:5–46Google Scholar
  42. Löcse F, Zierold T, Rößler R (2017) Provenance and collection history of Tubicaulis solenites (Sprengel) Cotta. A unique fossil tree fern and its 200-year journey through the international museum landscape. J Hist Coll 30(2):241–251Google Scholar
  43. Ludwig KR (2001) User’s manual for Isoplot/Ex rev. 2.49, vol 1a. Berkeley Geochronology Center Special Publications, Berkeley, pp 1–56Google Scholar
  44. Luthardt L, Rößler R, Schneider JW (2016) Palaeoclimatic and site-specific conditions in the early Permian fossil forest of Chemnitz-Sedimentological, geochemical and palaeobotanical evidence. Palaeogeogr Palaeoclimatol Palaeoecol 441(4):627–652CrossRefGoogle Scholar
  45. Luthardt L, Hofmann M, Linnemann U, Gerdes A, Marko L, Rößler R (2018) A new U–Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest. Int J Earth Sci (Geol Rundsch). ( https://doi.org/10.1007/s00531-018-1608-8) Google Scholar
  46. Martínek K, Pešek J, Opluštil S (2017) Significant hiatuses in the terrestrial Late Variscan Central and Western Bohemian basins (Late Pennsylvanian–Early Cisuralian) and their possible tectonic and climatic links. Geol Carpath 68(3):269–281CrossRefGoogle Scholar
  47. McCann T (ed) (2008) The geology of Central Europe. Volume 1: Precambrian and Palaeozoic. Geological Society of London, London, pp 1–748Google Scholar
  48. Nasdala L, Götze J, Pidgeon RT, Kempe U, Seifert T (1998) Constraining a SHRIMP U–Pb age: micro-scale characterization of zircons from Saxonian Rotliegend rhyolites. Contrib Mineral Petrol 132:300–306CrossRefGoogle Scholar
  49. Naumann CF (1838) Erläuterungen zur Section XV der geognostische Charte des Königreiches Sachsen und der angrenzenden Länderabtheilungen 2:1–494Google Scholar
  50. Naumann CF (1864) Geognostische Beschreibung des Kohlenbassins von Flöha. W. Engelmann, Leipzig, 1–71Google Scholar
  51. Ogg JG, Ogg GM, Gradstein FM (2016) A concise geologic time scale. Elsevier, Amsterdam, pp 1–234CrossRefGoogle Scholar
  52. Opluštil S (1997) Coal-bearing depositions and palaeogeography of the Middle Westphalian in the Central Bohemia. 48. Berg- und Hüttenmännischer Tag, TU Bergakad. Freiberg, Kolloquium 1, abstracts, pp 31–32Google Scholar
  53. Opluštil S, Pešek J (1998) Stratigraphy, palaeoclimatology and palaeogeography of the Late Palaeozoic continental deposits in the Czech Republic. Geodiversitas 20(4):597–620Google Scholar
  54. Opluštil S, Pšenička J, Libertín M, Bashforth AR, Šimúnek Z, Drábková J, Dašková J (2009) A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic. Rev Palaeobot Palynol 155:234–347CrossRefGoogle Scholar
  55. Opluštil S, Pšenička J, Bek J, Wang J, Feng Z, Libertín M, Šimúnek Z, Bureš J, Drábková J (2014) T0 peat-forming plant assemblage preserved in growth position by volcanic ash-fall: a case study from the Middle Pennsylvanian of the Czech Republic. Bull Geosci 89(4):773–818CrossRefGoogle Scholar
  56. Opluštil S, Lojka R, Rosenau NA, Strnad L, Sýkorová I (2015) Middle Moscovian climate of eastern equatorial Pangea recorded in paleosols and fluvial architecture. Palaeogeogr Palaeoclimatol Palaeoecol 440:328–352.  https://doi.org/10.1016/j.palaeo.2015.09.009 CrossRefGoogle Scholar
  57. Opluštil S, Schmitz M, Cleal CJ, Martínek K (2016a) A review of the Middle-Late Pennsylvanian west European regional substages and floral biozones, and their correlation to the geological time scale based on new U–Pb ages. Earth Sci Rev 154:301–335CrossRefGoogle Scholar
  58. Opluštil S, Schmitz M, Káchlik V, Štamberg S (2016b) Re-assessment of lithostratigraphy, biostratigraphy and volcanic activity of the Late Paleozoic Intra-Sudetic, Krkonoše-Piedmont and Mnichovo Hradištĕ basins (Czech Republic) based on new U–Pb CA-ID-TIMS ages. Bull Geosci 91(2):399–432CrossRefGoogle Scholar
  59. Paech HJ (1989) Geological characterization of the ancient Variscan molasses of the Sub-Erzgebirge Basin. Z Geol Wiss Berlin 17(9):908–919Google Scholar
  60. Pointon MA, Chew DM, Ovtcharova M, Sevastopulo GD, Crowley QG (2012) New high-precision U–Pb dates from western European Carboniferous tuffs; implications for time scale calibration, the periodicity of late Carboniferous cycles and stratigraphical correlation. J Geol Soc 169:713–721CrossRefGoogle Scholar
  61. Pešek J (2004) Late Palaeozoic limnic basins and coal deposits of the Czech Republic. Folia Musei rerum naturalium Bohemiae Occidentalis. Geologica 1:1–188Google Scholar
  62. Pšenička J, Opluštil S (2011) Fossil flora from the Újezd u Svatého Kříže Coalfield (Bolsovian, Pennsylvanian), Radnice Basin, Czech Republic. Folia 45(1–2):61–93Google Scholar
  63. Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Pet 73:207–220CrossRefGoogle Scholar
  64. Rank G, Pälchen W (1989) Zur Geochemie der sauren postvariszischen Vulkanite im Raum Flöha—Karl-Marx-Stadt. Z geol Wiss 17(12):1087–1097Google Scholar
  65. Romer R, Hahne K (2010) Baltica meets Gondwana—the isotope geochemical record. In: Linnemann U, Romer R (eds) Pre-mesozoic geology of Saxo-Thuringia: from the Cadomian Active Margin to the Variscan Orogen, Schweizerbart, pp 363–370Google Scholar
  66. Rößler R, Barthel M (1998) Rotliegend taphocoenoses preservation favoured by rhyolitic explosive volcanism. Freiberger Forsch-H C474:59–101Google Scholar
  67. Rößler R, Zierold T, Feng Z, Kretzschmar R, Merbitz M, Annacker V, Schneider JW (2012) A snapshot of an Early Permian ecosystem preserved by explosive volcanism: new results from the petrified forest of Chemnitz, Germany. Palaois 27:814–834CrossRefGoogle Scholar
  68. Rothpletz A, Siegert Th, Danzig E (1909) Erläuterungen zur geologischen Spezialkarte des Königreichs Sachsen. Sektion Frankenberg-Hainichen. Blatt 78, 2. Aufl., W. Engelmann, pp 1–121Google Scholar
  69. Sagawe A, Gärtner A, Hofmann M, Linnemann U (2013) U–Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif. Geologica Saxonica 59:205–224Google Scholar
  70. Schneider JW, Rößler R, Gaitzsch BG (1995) Time lines of the Late Variscan volcanism—a holostratigraphic synthesis. Zbl Geol Paläont Teil I 1994(5/6):477–490Google Scholar
  71. Schneider JW, Rößler R, Hoth K, Wolf P, Lobin M, Gaitzsch BG, Walter H, Koch E-A (2005a) Vorerzgebirgs-Senke und Erzgebirge. Cour Forsch-Inst Senckenberg 254:447–460Google Scholar
  72. Schneider JW, Hoth K, Gaitzsch BG, Berger H-J, Steinborn H, Walter H, Zeidler MK (2005b) Carboniferous stratigraphy and development of the Erzgebirge Basin, East Germany. Z dt Ges Geowiss 156(3):431–466Google Scholar
  73. Schneider JW, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In: Lützner H, Kowakzyk G (eds) Stratigraphie von Deutschland. X. Rotliegend. Teil I: Innervariscische Becken. Schriftenr Dt Ges Geowiss, vol 61, pp 530–588Google Scholar
  74. Schneider JW, Werneburg R, Rößler R, Voigt S, Scholze F (2015) Example for the description of basins in the CPT nonmarine-marine correlation chart Thuringian Forest Basin, East Germany. Permophiles 61:29–35Google Scholar
  75. Schoene B (2014) U–Th–Pb geochronology. Reference module in Earth systems and environmental sciences. Treatise on Geochemistry, vol 4, 2nd edn. Elsevier, Amsterdam, pp 341–378Google Scholar
  76. Schwab M (1970) Tektonik, Sedimentation und Vulkanismus im Permosiles Mitteleuropas. Ber dt Ges geol Wiss A. Geol Paläont 15(1):29–45Google Scholar
  77. Sebastian U (1995) Die Strukturentwicklung des spätorogenen Erzgebirgsaufstiegs in der Flöhazone—Ein weiterer Beitrag zur postkollisionalen Extension am Nordrand der Böhmischen Masse. Freiberger Forschungshefte C 461:1–114Google Scholar
  78. Sircombe KN (2004) AGE DISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30:21–31CrossRefGoogle Scholar
  79. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubret MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  80. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  81. Wagner RH (1984) Megafloral Zones of the Carboniferous. Compte Rendu 9e Congrès International de Stratigraphie et Géologie du Carbonifère. Washington Champaign Urbana 1979 2:109–134Google Scholar
  82. Wagner RH, Álvarez-Vázquez C (2010) The Carboniferous floras of the Iberian Peninsula: a synthesis with geological connotations. Rev Palaeobot Palynol 162:239–324CrossRefGoogle Scholar
  83. Waters CN, Condon DJ (2012) Nature and timing of Late Mississippian to Mid-Pennsylvanian glacio-eustatic sea-level changes of the Pennine Basin, UK. J Geol Soc Lond 169:37–51CrossRefGoogle Scholar
  84. Wolf P, Hoth K, Kampe A, Rößler R, Schneider JW (2008) Karbon—Oberkarbon. In: Walter H, Pälchen W (eds) Geologie von Sachsen. Geologischer Bau und Entwicklungsgeschichte. E. Schweizerbart’sche Verlagsbuchhandlung Stuttgart, Stuttgart, pp 203–223Google Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Mineralien- und Lagerstättenkabinett St. EgidienSt. EgidienGermany
  2. 2.Senckenberg Naturhistorische Sammlungen DresdenDresdenGermany
  3. 3.Technische Universität Bergakademie Freiberg, Institut für GeologieFreibergGermany
  4. 4.Museum für Naturkunde ChemnitzChemnitzGermany

Personalised recommendations