Advertisement

U–Pb ages of magmatic and detrital zircon of the Döhlen Basin: geological history of a Permian strike-slip basin in the Elbe Zone (Germany)

  • J. ZiegerEmail author
  • L. Bittner
  • A. Gärtner
  • M. Hofmann
  • A. Gerdes
  • L. Marko
  • U. Linnemann
Original Paper

Abstract

The post-orogenic evolution of Variscan Central Europe is characterized by the formation of numerous basins. The early Permian Döhlen Basin is located in the Elbe Zone (Germany) and is bordered by metamorphic rocks of the Erzgebirge and numerous Variscan magmatic complexes. The NW–SE-oriented basin is evidence for a major rearrangement of stress fields during the post-Variscan reactivation of fault zones in Central Europe. Eleven samples of magmatic rocks and sediments have been analyzed with respect to their U–Th–Pb isotope ratios and geochemical composition. Of three magmatic samples (two tuffs, one trachyandesite), we analyzed 170 zircon grains. The Unkersdorf Tuff of the Unkersdorf Formation gave an age of 294 ± 3 Ma (Upper Asselian to Sakmarian), whereas a trachyandesite of the same formation was dated at 293 ± 5 Ma (Lower Artinskian to Lower Asselian). The Wachtelberg Ignimbrite (Upper Bannewitz Formation) showed an age of 286 ± 4 Ma (Artinskian to Lower Kungurian). As the first study, we also analyzed 984 detrital zircon grains of nine Late Paleozoic Central European sandstone and conglomerate samples of the Niederhäslich Formation and the Bannewitz Formation with respect to their U–Pb age composition. All sediments but two yielded two distinct age groups between 295 and 340 Ma and 530–750 Ma, as well as a minor amount of Precambrian zircon ages. Geochemical data points to an active margin setting with developing strike-slip basins. The data suggests a c. 10 Ma lasting basin formation during the second culmination of volcano-tectonic activity with basic to intermediate melts. The second youngest formation (Niederhäslich Formation) consists predominantly of pre-Permian basement material, which implies only minor volcanic activity and erosion from adjacent basement blocks. On the contrary, the uppermost and youngest Bannewitz Formation features strong evidence for volcanic activity in the neighboring area of the basin. The present study strongly suggests a rapid basin development and further shows how the evolution of the Döhlen Basin is proof for several post-Variscan tectonic reactivation phases in Sakmarian and Lower Kungurian of Central Europe. Finally, our results exemplarily show how basin evolution may be characterized by radiometric data of detrital zircon grains.

Keywords

Döhlen Basin U–Pb–Th geochronology Zircon Pyroclastic rocks Variscides 

Notes

Acknowledgements

The authors thank R Krause for helpful assist during the laboratory work. The constructive comments and suggestions by R Rößler, F Breitkreuz and A von Quadt greatly helped to improve the manuscript. In addition, the authors would like to thank Prof. Wolf-Christian Dullo for his editorial work and help.

Supplementary material

531_2019_1683_MOESM1_ESM.xlsx (318 kb)
Supplementary material 1 (XLSX 317 KB)
531_2019_1683_MOESM2_ESM.xlsx (92 kb)
Supplementary material 2 (XLSX 92 KB)
531_2019_1683_MOESM3_ESM.xlsx (13 kb)
Supplementary material 3 (XLSX 12 KB)

References

  1. Ahrendt H, Clauer N, Hunziker J, Weber K (1983) Migration of folding and metamorphism in the Rheinische Schiefergebirge deduced from K-Ar and Rb-Sr age determinations. In: Martin H, Eder F (eds) Intracontinental fold belts. Springer, Berlin, Heidelberg, New York, pp 323–338CrossRefGoogle Scholar
  2. Alexosky W, Leonhardt D (1994) Geologische Übersichtskarte des Freistaates Sachsen 1:400.000. Karte ohne quartäre Bildungen. Sächsisches Landesamt für Umwelt und Geologie. Bereich Boden und Geologie, DresdenGoogle Scholar
  3. Armstrong RA (2001) SHRIMP U–Pb zircon dating of the chlorite gneiss near Grumbach, west Dresden. Report A01-350b, Australian National University Canberra, p 4Google Scholar
  4. Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: results of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88:1305–1320CrossRefGoogle Scholar
  5. Awdankiewicz M, Breitkreuz C, Ehling B (2004) Emplacement textures in Late Palaeozoic andesite sills of the Flechtingen-Roßlau Block, north of Magdeburg (Germany). In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234. Geological Society, Special Publications, London, pp 51–66Google Scholar
  6. Bayer U et al (2002) The southern margin of the East European Craton: new results from seismic sounding and potential fields between the North Sea and Poland. Tectonophysics 360:301–314.  https://doi.org/10.1016/S0040-1951(02)00359-1 CrossRefGoogle Scholar
  7. Beck R (1892) Sektion Kreischa-Hänichen. - Erläuterungen zur Geologischen Spezialkarte des Königreiches Sachsen, Nr. 82, Blatt Kreischa. K. Finanz-Ministerium, Leipzig, p 108Google Scholar
  8. Benek R (1980) Geologisch-strukturelle Untersuchungen im Tharandter Vulkanitkomplex (Südteil der DDR). Z deutsh Geol Wiss 8:627–643Google Scholar
  9. Benek R, Kramer W, McCann T, Scheck M, Negendank JFW, Korich D, Huebscher HD, Bayer U (1996) Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophysics 266:379–404CrossRefGoogle Scholar
  10. Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91(6):611–627CrossRefGoogle Scholar
  11. Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193CrossRefGoogle Scholar
  12. Białek D, Kryza R, Oberc-Dziedzic T, Pin C (2014) Cambrian Zawidów granodiorites in the Cadomian Lusatian Massif (Central European Variscides): what do the SHRIMP zirconages mean? J Geosci 59:313–326Google Scholar
  13. Borkowska M, Hameurt J, Vidal P (1980) Origin and age of Izera gneisses and Rumburk granites in the Western Sudetes. Acta Geol Pol 30:121–145Google Scholar
  14. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57.  https://doi.org/10.1016/j.epsl.2008.06.010 CrossRefGoogle Scholar
  15. Breitkreuz C, Kennedy A (1999) Magmatic flare-up at the Carboniferous/Permian boundary in the NE German Basin revealed by SHRIMP zircon ages. Tectonophysics 302:307–326.  https://doi.org/10.1016/S0040-1951(98)00293-5 CrossRefGoogle Scholar
  16. Breitkreuz C et al (2007) Far Eastern Avalonia: its chronostratigraphic structure revealed by SHRIMP zircon ages from Upper Carboniferous to Lower Permian volcanic rocks (drill cores from Germany, Poland, and Denmark). Geol Soc Am Spec Pap 423:173–190Google Scholar
  17. Breitkreuz C, Renno AD, Schneider JW, Stanek K (2009) Late Paleozoic volcano sedimentary evolution of the Elbe Zone and the eastern Erzgebirge. Exkursionsf Veröff Deutsch Ges Geowiss 241:219–230Google Scholar
  18. Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini J-C (2007) Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat Geosci 1:64.  https://doi.org/10.1038/ngeo.2007.51 CrossRefGoogle Scholar
  19. Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, BerlinCrossRefGoogle Scholar
  20. Förster H, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer R (eds) Pre-Mesozoic Geology of Saxo-Thuringia: from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 287–308Google Scholar
  21. Franke W (2000) The mid-European segment of the Variscides: tectonometamorphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes—quantification and Modelling in the Variscan Belt of Central Europe, vol 179. Geological Society, Special Publications, London, pp 35–61Google Scholar
  22. Franke W, Żelaźniewicz A (2002) Structure and evolution of the Bohemian Arc. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of central Europe, vol 201. Geological Society, Special Publications, London, pp 279–293.  https://doi.org/10.1144/GSL.SP.2002.201.01.13 Google Scholar
  23. Frei D, Gerdes A (2009) Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem Geol 261:261–270CrossRefGoogle Scholar
  24. Gao S, Wedepohl KH (1995) The negative Eu anomaly in Archean sedimentary rocks: Implications for decomposition, age and importance of their granitic sources. Earth Planet Sci Lett 133:81–94.  https://doi.org/10.1016/0012-821X(95)00077-P CrossRefGoogle Scholar
  25. Gehmlich M (2003) Die Cadomiden und Varisziden des Saxothuringischen Terranes–Geochronologie magmatischer Ereignisse. Freib Forsch C500:1–129Google Scholar
  26. Gehmlich M, Linnemann U, Tichomirowa M, Lützner H, Bombach K (1997) Die Bestimmung des Sedimentationsalters cadomischer Krustenfragmente im Saxothuringikum durch die Einzelzirkon–Evaporatisationsmethode. Terra Nostra 5:46–49Google Scholar
  27. Geißler M, Breitkreuz C, Kiersnowski H (2008) Late Paleozoic volcanism in the central part of the Southern Permian Basin (NE Germany, W Poland): facies distribution and volcano-topographic hiati. Int J Earth Sci 97:973–989CrossRefGoogle Scholar
  28. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  29. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration: new insights from combined U–Pb and Lu–Hf in situ LA-ICPMS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261:230–243CrossRefGoogle Scholar
  30. Gradstein FM, Ogg JG, Hilgen FJ (2012) On the geologic time scale. Newsl Stratigr 45:171–188CrossRefGoogle Scholar
  31. Hausse R (1892) Profile durch das Steinkohlenbecken des Plauen'schen Grundes (das Döhlener Becken) bei Dresden. K. Finanz-Ministerium, Leipzig, p 116Google Scholar
  32. Heeremans M, Faleide J, Larsen BT (2004) Late Carboniferous Permian of NW Europe: an introduction to a new regional map. Geol Soc Lond Spec Publ 223:75–88CrossRefGoogle Scholar
  33. Hoffmann U (2000) Pyroklastite und Silicite im Rotliegend des Döhlen-Becken Stratigraphie, Genese und Paläontologie. Diploma thesis, TU BA FreibergGoogle Scholar
  34. Hoffmann U, Schneider JW (2005) Jungpaläozoikum der Döhlener Senke. In: Alexowsky W, Hoffmann U, Horna F, Kurze M, Schneider J, Tröger KA (eds) Geologische Karte des Freistaates Sachsen 1:25000, Erläuterungen zu Blatt 4947 Wilsdruff. Sächsisches Landesamt für Umwelt und Geologie (LfUG), Freiberg, pp 25–57Google Scholar
  35. Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous—Permian volcanic evolution in Central Europe—U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci 102(1):73–99CrossRefGoogle Scholar
  36. Hofmann M, Linnemann U, Gerdes A, Ullrich B, Schauer M (2009) Timing of dextral strike-slip processes and basement exhumation in the Elbe Zone (Saxo-Thuringian Zone): the final pulse of the Variscan Orogeny in the Bohemian Massif constrained by LASF-ICP-MS U–Pb zircon data. Geol Soc Spec Publ 327:197–214CrossRefGoogle Scholar
  37. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62.  https://doi.org/10.2113/0530027 CrossRefGoogle Scholar
  38. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  39. Katzung G (1995) Prä-Zechstein in Zntral- und Ostbrandenburg. Berl Geowiss Abh A 168:5–21Google Scholar
  40. Knape H (1963a) Tektonischer Bau und Strukturgenese im nordwestlichen Vorland des Flechtinger Höhenzuges: Teil II: regionale Entwicklung und struktureller Bau. Geologie 12:637–673Google Scholar
  41. Knape H (1963b) Tektonischer Bau und Strukturgenese im nordwestlichen Vorland des Flechtinger Höhenzuges; Teil I: stratigraphischer Überblick und Lagerungsverhältnisse. Geologie 1:509–536Google Scholar
  42. Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. G. A. Kaufmann’s Buchhandlung, DresdenGoogle Scholar
  43. Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian zone—Heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: From Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geological Society of America Special Paper 423, pp 153–172.  https://doi.org/10.1130/2007.2423(06)
  44. Kroner U, Romer RL, Linnemann U (2010) The Saxo-Thuringian Zone of the Variscan Orogen as part of Pangea. In: Linnemann U, Romer R (eds) Pre-Mesozoic geology of Saxo-Thuringia: from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 3–16Google Scholar
  45. Kröner A, Hegner E, Hammer J, Haase G, Bielicki KH, Krauss M, Eidam J (1994) Geochronology and Nd-Sr systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geol Rundsch 83:357–376CrossRefGoogle Scholar
  46. Kryza R, Pin C (1997) Cambrian/Ordovician magmatism in the Polish Sudetes: no evidence for subduction-related setting. EUG 9 Meeting, Strasbourg, p 144Google Scholar
  47. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Blackwell, OxfordGoogle Scholar
  48. Linnemann U (1994) Geologischer Bau und Strukturentwicklung der südlichen Elbe zone. Abhandlungen des Staatlichen Museums für Mineralogie Geologie zu Dresden 40:7–36Google Scholar
  49. Linnemann U (2003a) Die Struktureinheiten des Saxothuringikums. In: Linnemann U (ed) Das Saxothuringikum, vol 48/49. Geologica Saxonica, Dresden, pp 19–28Google Scholar
  50. Linnemann U (2003b) Sedimentation und geotektonischer Rahmen der Beckenentwicklung im Saxothuringikum (Neoproterozoikum—Unterkarbon). In: Linnemann U (ed) Das Saxothuringikum. Geologica Saxonica, vol 48/49. Dresden, pp 71–110Google Scholar
  51. Linnemann U, Romer RL (2002) The Cadomian Orogeny in Saxo-Thuringia, Germany: geochemical and Nd–Sr–Pb isotopic characterisation of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352:33–64CrossRefGoogle Scholar
  52. Linnemann U, Schauer M (1999) Die Entstehung der Elbezone vor dem Hintergrund der cadomischen und variszischen Geschichte des Saxothuringischen Terranes—Konsequenzen aus einer abgedeckten geologischen Karte. Zeitschrift für Geologische Wissenschaften 27(5/6):529–561Google Scholar
  53. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geological Society of America Special Paper 423, pp 61–96Google Scholar
  54. Linnemann U, Romer RL et al (2008a) The Precambrian. In: McCann T (ed) The Geology of Central Europe. Geological Society, London, publications 21–102Google Scholar
  55. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008b) The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43CrossRefGoogle Scholar
  56. Linnemann U, Ouzegane K, Drareni A, Hofmann M, Becker S, Gärtner A, Sagawe A (2011) Sands of West Gondwana: an archive of secular magmatism and plate interactions — A case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb–LA-ICP-MS detrital zircon ages. Lithos 123:188–203CrossRefGoogle Scholar
  57. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany. Precambr Res 244:236–278CrossRefGoogle Scholar
  58. Lorenz V, Haneke J (2004) Relationship between diatremes, dykes, sills, laccoliths, intrusive-extrusive domes, lava flows, and tephra deposits with unconsolidated water-saturated sediments in the late Variscan intermontane Saar-Nahe Basin, SW Germany. Geol Soc Lond Spec Publ 234:75–124CrossRefGoogle Scholar
  59. Lorenz V, Nicholls IA (1984) Plate and intraplate processes of Hercynian Europe during the late Paleozoic. Tectonophysics 107:25–56CrossRefGoogle Scholar
  60. Ludwig KR (2001) User manual for Isoplot/ex rev. 2.49. Berkeley Geochronology Center Special Publications 1a, pp 1–56Google Scholar
  61. Luthardt L, Hofmann M, Linnemann U, Gerdes A, Marko L, Rößler R (2018) A new U-Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest. Int J Earth Sci 107:2465–2489CrossRefGoogle Scholar
  62. Mattern F (1996) The Elbe zone at Dresden-a Late Paleozoic pull-apart intruded shear zone. Z deutsch Geol Ges 147:57–80Google Scholar
  63. Mattern F (2001) Permo-Silesian movements between Baltica and Western Europe: tectonics and “basin families”. Terra Nova 13:368–375CrossRefGoogle Scholar
  64. Nakamura N (1974) Determination of REE, BA, FE, Mg, Na and K in carbonaceous and ordinary chrondrites. Geochim Cosmochim Acta 38:757–775CrossRefGoogle Scholar
  65. Nance RD, Murphy JB (1996) Basement isotopic signatures and Neoproterozoic paleogeography of Avalonian-Cadomian and related terranes in the Circum-North Atlantic. In: Nance RD, Thompson MD (eds) Avalonian and related peri-Gondwanan terranes of the Circum-North Atlantic. Geological Society of America Special Paper 304, pp 333–346.  https://doi.org/10.1130/0-8137-2304-3.333
  66. Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31CrossRefGoogle Scholar
  67. Nance RD, Murphy JB, Strachan RA, Keppie JD, Gutiérrez-Alonso G, Fernández-Suárez J, Quesada C, Linnemann U, D’lemos R, Pisarevsky SA (2008) Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections. In: Ennih N, Liégeois J-P (eds) The boundaries of the West African craton, vol 297. Geological Society, Special Publications, London, pp 345–383Google Scholar
  68. Nance RD, Gutierrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2012) A brief history of the Rheic Ocean. Geosci Front 3:125–135CrossRefGoogle Scholar
  69. Nasdala L, Wenzel Th, Pidgeon RT, Kronz A (1999) Internal structures and dating of complex zircons from Meissen Massif monzonites, Saxony. Chem Geol 156:331–341CrossRefGoogle Scholar
  70. Naumann CF, Cotta VB (1845) Geognostische Beschreibung des Königreiches Sachsen, Erläuterungen zu Section X. Geognostische Skizze der Umgebung von Dresden und Meißen. Arnoldische Buchhandlung, DresdenGoogle Scholar
  71. Neumann E (1961) Die Geröllführung der Konglomerathorizonte des Rotliegenden im SE-Teil des Döhlener Beckens. Diploma thesis, TU BA FreibergGoogle Scholar
  72. Neumann ER, Wilson M, Heeremans M, Spencer EA, Obst K, Timmerman MJ, Kirstein L (2004) Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. Geol Soc Spec Publ 223:11–40CrossRefGoogle Scholar
  73. Oberc-Dziedzic T, Kryza R, Pin C, Mochnacka K, Larionov A (2009) The Orthogneiss and Schist Complex of the Karkonosze–Izera Massif (Sudetes, SW Poland): U–Pb SHRIMP zircon ages, Nd-isotope systematics and protoliths. Geol Sudet 41:3–24Google Scholar
  74. Obst K, Katzung G, Hammer J (1999) Dating of the Late Autunian basic magmatism in the Thuringian Forest. N Jb Geol Palaeont Mh 1999:1–10Google Scholar
  75. Pietzsch K (1956) Die Elbtalzone. Berichte der Geologischen Gesellschaft der Deutschen Demokratischen Republik 1:117–135Google Scholar
  76. Pietzsch K (1963) Geologie von Sachsen. VEB Deutscher Verlag der Geowissenschaften, BerlinGoogle Scholar
  77. Pin C, Marini F (1993) Early Ordovician continental break up in Variscan Europe: Nd–Sr isotope and trace element evidence from bimodal igneous associations of the southern Massif Central. France Lithos 29:177–196CrossRefGoogle Scholar
  78. Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhauserová J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm-Nd isotope and geochemical data. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from avalonian-cadomian active margin to alleghenian-variscan collision. Geological Society of America Special Paper 423, pp 209–229Google Scholar
  79. Reichel W (1966) Stratigraphie, Paläogeographie und Tektonik des Döhlener Beckens bei Dresden. Dissertation, TU BA FreibergGoogle Scholar
  80. Reichel W (1970) Stratigraphie, Paläogeographie und Tektonik des Döhlener Beckens bei Dresden. Abhandlungen des Staatlichen Museum für Mineralogie Geologie zu Dresden 17:1–133Google Scholar
  81. Reichel W (1985) Schichtstörungen im unterprmischen Döhlener Becken bei Dresden. Ein Beitrag zur lithofaziellen und tektonischen Entwicklung eines intramontanen vulkanotektonischen Beckens. Hallesches Jahrbuch für Geowissenschaften 10:21–34Google Scholar
  82. Reichel W, Lange JM (2007) Cherts (Hornsteine) aus dem Döhlener Becken bei Dresden. Geologica Saxonica 52/53:117–128Google Scholar
  83. Reichel W, Schauer M (2006) Das Döhlener Becken bei Dresden / Geologie und Bergbau. Sächsisches Landesamt für Umwelt und Geologie (LfUG), DresdenGoogle Scholar
  84. Reichel W, Schneider JW (2012) Rotliegend im Döhlen-Becken. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61:589–625Google Scholar
  85. Repstock A, Breitkreuz C, Lapp M, Schulz B (2018) Voluminous and crystal-rich igneous rocks of the Permian Wurzen volcanic system, northern Saxony, Germany: physical volcanology and geochemical characterization. Int J Earth Sci 107:1485–1513.  https://doi.org/10.1007/s00531-017-1554-x CrossRefGoogle Scholar
  86. Robardet M (2002) Alternative approach to the Variscan Belt in southwestern Europe: preorogenic paleobiogeographical constraints. In: Martinez Catalán MR, Hatcher RD Jr, Arenas R, García FD (eds) Variscan-Appalachian dynamics: The building of the late Paleozoic basement. Geological Society of America Special Paper 364, pp 1–15.  https://doi.org/10.1130/0-8137-2364-7.1
  87. Röllig G (1976) Zur Petrogenese und Vulkanotektonik der Pyroxenquarzporphyre (Ignimbrite) des Nordwestsächsischen Vulkanitkomplexes. Jb Geol 5:176–268Google Scholar
  88. Romer RL, Linnemann U, Gehmlich M (2003) Geochronologische und isotopengeochemische Randbedingungen für die cadomische und variszische Orogenese im Saxothuringikum. In: Linnemann U (ed) Saxothuringikum Das, vol 48/49. Geologica Saxonica, Dresden, pp 19–28Google Scholar
  89. Roser BP, Korsch RJ (1986) Determination of Tectonic Setting of Sandstone-mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. J Geol 94(5):635–650CrossRefGoogle Scholar
  90. Rößler R, Barthel M (1998) Rotlignd taphocoenoses preservation favoured by rhyolithic explosive volcanism. Freib Forsch H C474:59–101Google Scholar
  91. Rößler R, Kretzschmar R, Annacker V, Mehlhorn S, Merbitz M, Schneider J, Luthardt L (2009) Auf Schatzsuche in Chemnitz–Wissenschaftliche Grabungen’09 Veröffentlichungen des. Museums für Naturkunde Chemnitz 32:25–46Google Scholar
  92. Sagawe A, Gärtner A, Linnemann U, Hofmann M, Gerdes A (2016) Exotic crustal components at the northern margin of the Bohemian Massif—implications from U–Th–Pb and Hf isotopes of zircon from the Saxonian Granulite Massif. Tectonophysics 681:234–249CrossRefGoogle Scholar
  93. Schmiedel T, Breitkreuz C, Görz I, Ehling B (2015) Geometry of laccolith margins: 2D and 3D models of the Late Paleozoic Halle Volcanic Complex (Germany). Int J Earth Sci 104:323–333CrossRefGoogle Scholar
  94. Schneider JW (1994) Environment, biotas and taphonomy of the Lower Permian lacustrine Niederhäslich limestone, Döhlen basin, Germany. Trans R Soc Edinburgh Earth Sci 84:453–464CrossRefGoogle Scholar
  95. Schneider JW, Gebhardt U (1992) Dasycladaceen und andere “marine” Algen in lakustrischen Kalken des Unter-Perm (Assel) im intramontanen Döhlen Becken (Elbe-Zone). Freib. Forsch H C 445:66–88Google Scholar
  96. Schneider JW, Hoffmann U (2001) Jungpaläozoikum der Döhlener Senke. In: Alexowsky W, Schneider JW, Tröger KA, Wolf L (eds) Geologische Karte des Freistaates Sachsen 1: 25 000, Erläuterungen zu Blatt 4948 Dresden. Sächsisches Landesamt für Umwelt und Geologie, Freiberg, pp 15–40Google Scholar
  97. Schneider JW, Romer RL (2010) The Late Variscan Molasses (Late Carboniferous to Late Permian) of the Saxo-Thuringian Zone. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia. Schweizerbart, Stuttgart, pp 323–346Google Scholar
  98. Schneider JW, Rössler R, Gaitzsch B (1995) Time lines of the Late Variscan volcanism—holostratigraphic synthesis. Zentralblatt für Geologie und Paläontologie Teil I 5(6):477–490Google Scholar
  99. Schneider J, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In: Lützner H, Kowalczyk G (eds) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken, vol 61. Schriftenr. Dt. Ges. Geowiss, Hannover, pp 530–588Google Scholar
  100. Sircombe KN (2004) AGEDISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30(1):21–31CrossRefGoogle Scholar
  101. Slama J, Kosler J, Concon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plesovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  102. Smith G, Lowe DR (1991) Lahars: volcano – hydrologic events and deposition in the debris flow-hyperconcentrated flow continuum. In: Fisher R, Smith G (eds) Sedimentation in Volcanic Settings, vol 45. SEPM Specual Publication, Tulsa, OK, pp 60–70Google Scholar
  103. Stacey J, Kramers J (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221CrossRefGoogle Scholar
  104. Sterzel JT (1881) Über die Flora der unteren Schichten des Plauenschen Grundes. Z deutsh Geol Ges 33:339–347Google Scholar
  105. Sterzel JT (1893) Die Flora des Rothliegenden im Plauenschen Grunde bei Dresden. Abhandlungen der Mathematisch-Physikalischen Classe Königlich Sächsischen Gesellschaft der Wissenschaften 19:1–172Google Scholar
  106. Stille H (1949) Uralte Anlagen in der Tektonik Europas. Z deutsh Geol Ges 99:150–174Google Scholar
  107. Tichomirowa M, Berger H-J, Koch EA, Belyatski BV, Götze J, Kempe U, Nasdala L, Schaltegger U (2001) Zircon ages of high-grade Gneisses in the eastern Erzgebirge (Central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56:303–332CrossRefGoogle Scholar
  108. Tröger K-A, Behr H-J, Reichel W (1968) Die tektonisch-fazielle Entwicklung des Elbelineaments im Bereich der Elbtalzone. Freib Forsch H C241:71–85Google Scholar
  109. Walther D et al (2016) The Late Carboniferous Schönfeld-Altenberg Depression on the NW margin of the Bohemian Massif (Germany/Czech Republic): volcano sedimentary and magmatic evolution. J Geosci 61:371–393CrossRefGoogle Scholar
  110. Wang X, Griffin WL, Chen J, Huang P, Li X (2011) U and Th contents and Th/U ratios of Zircon in felsic and mafic magmatic rocks: improved zircon-melt distribution coefficients. Acta Geol Sin 85:164–174CrossRefGoogle Scholar
  111. Wendt I, Höhndorf A, Wendt JI, Müller P, Wetzel K (1995) Radiometric dating of volcanic rocks in NW-Saxony by combined use of U–Pb and Sm-Nd zircon dating as well as Sm-Nd and Rb-Sr whole rock and mineral systematics. 11th meeting on geodynamics of eurpean Variscides, 2nd Symposium on Permocarboniferous igneous rocks. Terra Nostra Potsdam 7:147–148Google Scholar
  112. Werneburg R, Schneider JW (2006) Amphibian biostratigraphy of the European Permo-Carboniferous. Geol Soc Lond Spec Publ 265(1):201–215CrossRefGoogle Scholar
  113. Ziegler P (1990) Geological Atlas of Western and Central Europe. Geological Society Publishing House, LondonGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Museum of Mineralogy and Geology, Department of GeochronologySenckenberg Natural History Collections DresdenDresdenGermany
  2. 2.Faculty of Environmental Sciences, Department of GeographyTechnical University DresdenDresdenGermany
  3. 3.Institute of Agronomy and Nutritional Sciences, Soil BiogeochemistryMartin-Luther University Halle-WittenbergHalle (Saale)Germany
  4. 4.Department of Geoscience, MineralogyGoethe University FrankfurtFrankfurtGermany

Personalised recommendations