Unusual marbles in a non-metamorphic succession of the SW Alps (Valdieri, Italy) due to early Oligocene hydrothermal flow

  • Carlo BertokEmail author
  • Luca Barale
  • Anna d’Atri
  • Luca Martire
  • Fabrizio Piana
  • Piergiorgio Rossetti
  • Axel Gerdes
Original Paper


In the SW Alps, at the NE margin of the Argentera Massif, the occurrence of isolated bodies of silicate-bearing marbles (Valdieri Marble), laterally passing to non-metamorphic Mesozoic limestones of the Dauphinois succession, appears enigmatic, since their origin cannot be related to the regional metamorphism. The stratigraphic, geometric, petrographic, and geochemical features of the Valdieri Marble indicate that it originated from the upflow of hydrothermal fluids which deeply recrystallised the limestone and provoked the abundant neoblastesis of silicate minerals, at an estimated crystallisation temperature of ca. 350 °C. This paper provides for the first time an absolute U/Pb age, comprised between 30 and 31.6 Ma (early Oligocene), for the Valdieri Marble, which is affected by a syn-genetic shear foliation in turn crosscut by the main Alpine tectonic foliations. The hydrothermal fluids that formed the Valdieri Marble migrated along low-angle shear zones, mostly parallel to the sedimentary primary bedding, which were downward connected with high-angle master faults of the “Alpine SW transfer”, a main Oligocene–early Miocene transcurrent shear zone at the southern termination of the Western Alps. The localized heat flow sustaining the hydrothermal system could be related to the early Oligocene thermal event, well documented by magmatic activity in the Western and Central Alps.


Valdieri Marble Dauphinois Domain Maritime Alps U/Pb geochronology Hydrothermal flows Alpine SW transfer 



The authors thank the Editor Wolf-Christian Dullo, and the reviewers Roland Maas and Giancarlo Molli, whose useful suggestions and constructive criticisms really improved the manuscript. Elia Mulazzano, Debora Scanu, and Fabrizio Scarrone are kindly acknowledged for sharing field work. The research was funded by the University of Torino (ex 60% funds) and by the Italian CNR (National Research Council), Istituto di Geoscienze e Georisorse, unità di Torino. The Carbocalcio Cuneese Spa is kindly acknowledged for allowing access and sampling in the San Lorenzo quarry.

Supplementary material

531_2019_1676_MOESM1_ESM.pdf (627 kb)
Supplementary material 1 (PDF 627 KB)
531_2019_1676_MOESM2_ESM.jpg (1.1 mb)
Supplementary material 2 (JPG 1141 KB)
531_2019_1676_MOESM3_ESM.jpg (9.5 mb)
Supplementary material 3 (JPG 9706 KB)
531_2019_1676_MOESM4_ESM.jpg (2.6 mb)
Supplementary material 4 (JPG 2639 KB)


  1. Abiad P, Bortolami G, Cancelmo C et al (1970) Carta geologica d’Italia, Foglio 90, “Demonte”. II ed., Serv Geol It, RomaGoogle Scholar
  2. Albanis Beaumont JF (1795) Travels through the Maritime Alps, from Italy to Lyons, across the Col de Tende, by the way of Nice, Provence, Languedoc, &c. with topographical and historical descriptions. Bensley, LondonGoogle Scholar
  3. Barale L, Bertok C, d'Atri A et al (2013) Hydrothermal dolomitization of the carbonate Jurassic succession in the Provençal and Subbriançonnais Domains (Maritime Alps, North-Western Italy). C R Geosci 345:47–53CrossRefGoogle Scholar
  4. Barale L (2014) The Meso-Cenozoic stratigraphic successions adjoining the Argentera Massif: Stratigraphic, sedimentologic and diagenetic evidence of syndepositional tectonics (Unpublished doctoral dissertation). Torino: Università di Torino.
  5. Barale L, Bertok C, d’Atri A, Martire L, Piana F, Domini G (2016a) Geology of the Entracque–Colle di Tenda area (Maritime Alps, NW Italy). J of Maps 12(2):359–370CrossRefGoogle Scholar
  6. Barale L, Bertok C, Salih Talabani N, d’Atri A, Martire L, Piana F, Préat A (2016b) Very hot, very shallow hydrothermal dolomitization: an example from the Maritime Alps (NW Italy–SE France). Sedimentology 63(7):2037–2065CrossRefGoogle Scholar
  7. Barale L, Bertok C, d’Atri A, Martire L, Piana F (2017) Stratigraphy, sedimentology and syndepositional tectonics of the Jurassic–Cretaceous succession at the transition between Provençal and Dauphinois domains (Maritime Alps, NW Italy). Riv Ital Paleontol Stratigr 123(3):355–378Google Scholar
  8. Barelli V (1835) Cenni di statistica mineralogica degli Stati di S.M. il Re di Sardegna. Tipografia Fodratti, TorinoGoogle Scholar
  9. Baubron JC (1984) Volcanisme du Sud-Est de la France. In: Debrand-Passard S, Courbouleix S, Lienhardt MJ (eds) Synthèse géologique du Sud-Est de la France, Mem. BRGM, vol 125, pp 514–517Google Scholar
  10. Bellon H (1981) Chronologie radiométrique (K-Ar) des manifestations magmatiques autour de la méditerranée occidentale entre 33 et 1 Ma. In: Wezel FC (ed) Sedimentary basins of mediterranean margins. Proceedings of the international conference on Urbino Univ., 20–22 October 1980, pp 341–360Google Scholar
  11. Beltrando M, Lister GS, Rosenbaum G, Richards S, Forster MA (2010) Recognizing episodic lithospheric thinning along a convergent plate margin. The example of the Early Oligocene Alps. Earth Sci Rev 103(3–4):81–98CrossRefGoogle Scholar
  12. Bersezio R, Barbieri P, Mozzi R (2002) Redeposited limestones in the upper cretaceous succession of the Helvetic Argentera Massif at the Italy–France border. Eclogae geol Helv 95:15–30Google Scholar
  13. Bertok C, Martire L, Perotti E et al (2012) Kilometre-scale palaeoescarpments as evidence for Cretaceous synsedimentary tectonics in the External Briançonnais Domain (Ligurian Alps, Italy). Sediment Geol 251:58–75CrossRefGoogle Scholar
  14. Bertok C, Musso A, d’Atri A, Martire C, Piana F (2018) Geology of the Colle di Tenda – Monte Marguareis area (Ligurian Alps, NW Italy). J Maps 14(2):542–551. CrossRefGoogle Scholar
  15. Blencoe JG, Guidotti CV, Sassi FP (1994) The paragonite-muscovite solvus: II. Numerical geothermometers for natural, quasibinary paragonite-muscovite pairs. Geochimica Cosmochim Acta 58(10):2277–2288CrossRefGoogle Scholar
  16. Boyet M, Lapierre H, Tardy M, Bosch D, Maury R (2001) Nature des sources des composants andésitiques des Grès du Champsaur et des Grès de Taveyannaz; implications dans l’évolution des Alpes occidentales au Paléogène. Bull Soc Géol France 172(4):487–501CrossRefGoogle Scholar
  17. Callegari E, Cigolini C, Medeot O, D'Antonio M (2012) Petrogenesis of calc-alkaline and shoshonitic post-collisional Oligocene volcanics of the Cover Series of the Sesia Zone, Western Italian Alps. Geodin Acta 17(1):1–29CrossRefGoogle Scholar
  18. Carraro F, Dal Piaz GV, Franceschetti B, Malaroda R, Sturani C, Zanella E (1970) Note Illustrative della Carta Geologica del Massiccio dell’Argentera alla scala 1: 50,000. Mem Soc Geol Italy 9:557–663Google Scholar
  19. Catella M (1965) Valdieri e le sue cave di marmo. Atti e rassegna tecnica della Società degli Ingegneri e degli architetti in Torino 19 (12): 660–663Google Scholar
  20. Catella M (1969) Marmi Piemontesi. Cronache economiche CCIAA 313(4):51–64Google Scholar
  21. Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485CrossRefGoogle Scholar
  22. Collombet M, Thomas JC, Chauvin A et al (2002) Counterclockwise rotation of the western Alps since the Oligocene: new insights from paleomagnetic data. Tectonics 21:14.1–14.15. CrossRefGoogle Scholar
  23. d’Atri A, Piana F, Barale L, Bertok C, Martire L (2016) Geological setting of the southern termination of Western Alps. Int J Earth Sci 105(6):1831–1858CrossRefGoogle Scholar
  24. Davies GR, Smith LB (2006) Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bull 90:1641–1690CrossRefGoogle Scholar
  25. Davies JH, von Blanckenburg F (1995) Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129(1–4):85–102CrossRefGoogle Scholar
  26. Dumont T, Simon-Labric T, Authemayou C, Heymes T (2011) Lateral termination of the north-directed Alpine orogeny and onset of westward escape in the Western Alpine arc: structural and sedimentary evidence from the external zone. Tectonics 30:TC5006. CrossRefGoogle Scholar
  27. Dumont T, Schwartz S, Guillot S, Simon-Labric T, Tricart P, Jourdan S (2012) Structural and sedimentary records of the Oligocene revolution in the Western Alpine arc. J Geodyn 56–57:18–38CrossRefGoogle Scholar
  28. Féraud G, Ruffet G, Stéphan JF, Lapierre H, Delgado E, Popoff M (1995) Nouvelles données géochronologiques sur le volcanisme paléogène des Alpes Occidentales: existence d’un événement magmatique bref généralisé. In: Magmatismes dans le Sud-Est de la France, Abstract Book of the Séance Spécialisée de la Société Géologique de France, Nice, October 25–26, 1995, p 38Google Scholar
  29. Fornaro M, Giuliani A, Lovera E (2005) Possibilità di riavvio di difficili coltivazioni di marmo alpino. Giornale di Geologia Applicata 2:313–319Google Scholar
  30. Franchi S (1926) Passaggi graduali a forme cristalline, calcescistose e marmoree, del Nummulitico e del Cretaceo fossiliferi, nelle Valli del Gesso e della Stura di Cuneo. Atti della Regia Accademia dei Lincei Rendiconti 6(3):257–261Google Scholar
  31. Frimmel HE (1997) Chlorite thermometry in the Witwatersrand Basin: constraints on the Paleoproterozoic geotherm in the Kaapvaal Craton, South Africa. J Geol 105:601–615CrossRefGoogle Scholar
  32. Garzanti E, Malusà MG (2008) The Oligocene Alps: domal unroofing and drainage development during early orogenic growth. Earth Planet Sci Lett 243:656–580Google Scholar
  33. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA–(MC–) ICP–MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican meta-sediment in Central Germany. Earth Planet Sci Lett 249:47–62CrossRefGoogle Scholar
  34. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration—new insights from combined U–Pb and Lu–Hf in-situ La–ICP–MS analyses of Archean zircons from the Limpopo Belt. Chem Geol 261(3–4):230–243CrossRefGoogle Scholar
  35. Gidon M (1972) Les chaînons briançonnais et subbriançonnais de la rive gauche de la Stura entre le Val de l'Arma (province de Cuneo Italie). Géol Alpine 48:87–120Google Scholar
  36. Giorgetti G, Monecke T, Kleeberg R, Herzig PM (2003) Intermediate sodium-potassium mica in hydrothermally altered rocks of the Waterloo deposit, Australia: a combined SEM-EMP-XRD-TEM study. Contrib Miner Petrol 146(2):159–173CrossRefGoogle Scholar
  37. Giraud JD (1983) L’arc andésitique paléogène des Alpes occidentales. PhD Thesis, Université de Nice, p 378Google Scholar
  38. Guidotti CV, Sassi FP, Blencoe JG, Selverstone J (1994) The paragonite-muscovite solvus: I. P-T-X limits derived from the Na-K compositions of natural, quasibinary paragonite-muscovite pairs. Geochimica Cosmochim Acta 58(10):2269–2275CrossRefGoogle Scholar
  39. Handy MR, Babist J, Wagner R, Rosenberg C, Konrad-Schmolke M (2005) Decoupling and its relation to strain partitioning in continental lithosphere: insight from the Periadriatic fault system (European Alps). In: Gapais D, Brun JP, Cobbold PR (ed) Deformation mechanisms, rheology and tectonics: from minerals to the lithosphere. Book Series: Geological Society Special Publication 243:249–276Google Scholar
  40. Handy MR, Schmid SM, Bousquet R et al (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102:121–158CrossRefGoogle Scholar
  41. Hansman RJ, Albert R, Gerdes A, Ring U (2018) Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite. Geology 46(3):207–210CrossRefGoogle Scholar
  42. Hensen C, Scholz F, Nuzzo M, Valadares V, Gràcia E, Terrinha P, Liebetrau V, Kaul N, Silva S, Martínez-Loriente S, Bartolome R, Piñero E, Magalhães VH, Schmidt M, Weise SM, Cunha M, Hilario A, Perea H, Rovelli L, Lackschewitz K (2015) Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea. Geology 43(4):339–342CrossRefGoogle Scholar
  43. Hey MH (1954) A new review of the chlorites. Mineralog Mag 30:277–292Google Scholar
  44. Incerpi N, Martire L, Manatschal G, Bernasconi S (2017) Evidence of hydrothermal fluid flow in a hyperextended rifted margin: the case study of the Err nappe (SE Switzerland). Swiss J Earth Sci 110(2):439–456Google Scholar
  45. Jourdan S, Bernet M, Tricart P, Hardwick E, Paquette J, Guillot S, Dumont T, Schwartz S (2013) Short-lived, fast erosional exhumation of the internal western Alps during the late early Oligocene: constraints from geothermochronology of pro- and retro-side foreland basin sediments. Lithosphere 5(2):211–225CrossRefGoogle Scholar
  46. Kapferer N, Mercolli I, Berger A, Ovtcharova M, Fügenschuh B (2012) Dating emplacement and evolution of the orogenic magmatism in the internal Western Alps: 2. The Biella Volcanic Suite. Swiss J Geosci 105:67–84CrossRefGoogle Scholar
  47. Kastner M (1971) Authigenic feldspars in carbonate rocks. Am Mineral 56:1403–1442Google Scholar
  48. Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol 82:1898–1911CrossRefGoogle Scholar
  49. Li Q, Parrish RR, Horstwood MSA, McArthur JM (2014) U-Pb dating of cements in Mesozoic ammonites. Chem Geol 376:76–83CrossRefGoogle Scholar
  50. Ludwig KR (2009) Isoplot/Ex Ver 3.71: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, BerkeleyGoogle Scholar
  51. Malaroda R (1957) Studi geologici sulla dorsale montuosa compresa tra le basse Valli della Stura di Demonte e del Gesso (Alpi Marittime). Memorie degli Istituti di Geologia e Mineralogia dell’Università di Padova 20:1–130Google Scholar
  52. Malaroda R (1963) Les faciès à composante détritique dans le Crétacé autochtone des Alpes–Maritimes italiennes. Geol Rundsch 53:41–57CrossRefGoogle Scholar
  53. Malaroda R (ed) (1970) Carta Geologica del Massiccio dell’Argentera alla scala 1:50.000. Memorie della Società Geologica Italiana 9Google Scholar
  54. Malaroda R (2000) Il flysch di Demonte-Aisone e il sondaggio di Aisone. Università di Torino, Dipartimento di scienze della terraGoogle Scholar
  55. Mattioli M, Di Battistini G, Zanzucchi G (2002) Petrology, geochemistry and age of the volcanic clasts from the Canetolo Unit (Northern Apennines, Italy). Boll Soc Geol It 1:399–416Google Scholar
  56. Mendes da Costa E (1757) A Natural History of fossils. Davis and Reymers, LondonGoogle Scholar
  57. Nicolis de Robilant SB (1786) Essai Géographique suivi d’une topographie souterraine, minéralogique, et d’une docimasie des États de S.M. en terre ferme. Memorie della Regia Accademia delle Scienze di Torino 6:191–304Google Scholar
  58. Piana F, Musso A, Bertok C, d’Atri A, Martire L, Perotti E, Varrone D, Martinotti G (2009) New data on post-Eocene tectonic evolution of the External Ligurian Briançonnais (Western Ligurian Alps). Ital J Geosci 128:353–366Google Scholar
  59. Piana F, Battaglia S, Bertok C, d’Atri A, Ellero A, Leoni L, Perotti E (2014) Illite (KI) and chlorite (AI) “crystallinity” indices as a constraint for the evolution of the External Briançonnais Front in Western Ligurian Alps (NW Italy). Ital J Geosci 133(3):445–454CrossRefGoogle Scholar
  60. Ring U, Gerdes A (2016) Kinematics of the Alpenrhein–Bodensee graben system in the Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps arc. Tectonics 35:1367–1391. CrossRefGoogle Scholar
  61. Roberts NMW, Rasbury E, Troy P, Randall R, Smith CJ, Horstwood MSA, Condon DJ (2017) A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem Geophys Geosyst 18(7):2807–2814CrossRefGoogle Scholar
  62. Rolland Y, Lardeaux J-M, Jolivet L (2012) Deciphering orogenic evolution. J Geodyn 56–57:1–6CrossRefGoogle Scholar
  63. Rosenbaum G, Lister GS, Duboz C (2002) Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. J Virt Expl 8:107–130Google Scholar
  64. Ruffini R, Cosca MA, d’Atri A, Hunziker JC, Polino R (1995) The volcanic supply of the Taveyanne turbidites (Savoie, France): a riddle for Tertiary Alpine volcanism. Accademia Nazionale delle Scienze detta dei XL, Roma, Atti convegno Rapporti Alpi-Appennino, Peveragno: 359–376Google Scholar
  65. Ruffini R, Polino R, Callegari E, Hunziker JC, Pfeifer HR (1997) Volcanic clast-rich turbidites of the Taveyanne sandstones from the Thônes syncline (Savoie, France): records for a Tertiary postcollisional volcanism. Schweiz Mineral Petrogr Mitt 77(2):161–174Google Scholar
  66. Schwartz S, Guillot S, Tricart P, Bernet M, Jourdan S, Dumont T, Montagnac G (2012) Source tracing of detrital serpentinite in the Oligocene molasse deposits from the western Alps (Barrême basin): implications for relief formation in the internal zone. Geol Mag 149(5):841–856CrossRefGoogle Scholar
  67. Sibson RH (1987) Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology 15:701–704CrossRefGoogle Scholar
  68. Sismonda A (1833) Essai géognostique dans les deux vallées voisines de Stura et de Vinay. Memorie della Reale Accademia delle Scienze di Torino 36(1):1–10Google Scholar
  69. Sismonda A (1848) Notizie e schiarimenti sulla costituzione delle Alpi piemontesi. Memorie della Reale Accademia delle Scienze di Torino 9(2):1–123Google Scholar
  70. Stanley DJ (1980) The Saint-Antonin Conglomerate in the Maritime Alps; a model for coarse sedimentation on a submarine slope. Smithson Contrib Mar Sci 5:1–25Google Scholar
  71. Steck A (2008) Tectonics of the Simplon massif and Lepontine gneiss dome: deformation structures due to collision between the underthrusting European plate and the Adriatic indenter. Swiss J Geosci 101(2):515–546CrossRefGoogle Scholar
  72. Venturelli G, Thorpe RS, Dal Piaz GV, Del Moro A, Potts PJ (1984) Petrogenesis of calc-alkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from the Northwestern Alps, Italy. Contrib Miner Petrol 86(3):209–220CrossRefGoogle Scholar
  73. Viola G, Mancktelow NS (2005) From XY tracking to buckling: axial plane cleavage fanning and folding during progressive deformation. J Struct Geol 27(3):409–417CrossRefGoogle Scholar
  74. Vignaroli G, Faccenna C, Jolivet L, Piromallo C, Rossetti F (2008) Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy. Tectonophysics 450(1–4):34–50CrossRefGoogle Scholar
  75. Walshe JL (1986) A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ Geol 81:681–703CrossRefGoogle Scholar
  76. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187CrossRefGoogle Scholar
  77. Zang W, Fyfe WS (1995) Chloritisation of the hydrothermally altered bedrock at the Igarape Bahia gold deposit, Carajas, Brazil. Miner Deposita 30:30–38CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze della TerraUniversità di TorinoTurinItaly
  2. 2.CNR IGG-TorinoTurinItaly
  3. 3.Department of GeosciencesGoethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations