Advertisement

Possible solutions to several enigmas of Cretaceous climate

  • William W. Hay
  • Robert M. DeConto
  • Poppe de Boer
  • Sascha Flögel
  • Ying Song
  • Andrei Stepashko
Original Paper

Abstract

The nature of the warm climates of the Cretaceous has been enigmatic since the first numerical climate models were run in the late 1970s. Quantitative simulations of the paleoclimate have consistently failed to agree with information from plant and animal fossils and climate sensitive sediments. The ‘cold continental interior paradox’ (first described by DeConto et al. in Barrera E, Johnson C (eds) Evolution of the Cretaceous Ocean/climate system, vol 332. Geological Society of America Special Paper, Boulder, pp 391–406, 1999), has been an enigma, with extensive continental interiors, especially in northeast Asia, modeled as below freezing in spite of plant and other evidence to the contrary. We reconsider the paleoelevations of specific areas, particularly along the northeastern Siberian continental margin, where paleofloras indeed indicate higher temperatures than suggested by current climate models. Evidence for significant masses of ice on land during even the otherwise warmest times of the Cretaceous is solved by reinterpretation of the δ18O record of fossil plankton. The signal interpreted as an increase in ice volume on land is the same as the signal for an increase in the volume of groundwater reservoirs on land. The problem of a warm Arctic, where fossil floras indicate that they never experienced freezing conditions in winter, could not be solved by numerical simulations using higher CO2 equivalent greenhouse gas concentrations. We propose a solution by assuming that paleoelevations were less than today and that there were much more extensive wetlands (lakes, meandering rivers, swamps, bogs) on the continents than previously assumed. Using ~ 8 × CO2 equivalent greenhouse gas concentrations and assuming 50–75% water surfaces providing water vapor as a supplementary greenhouse gas on the continents reduces the meridional temperature gradients. Under these conditions the equatorial to polar region temperature gradients produce conditions compatible with fossil and sedimentological evidence.

Keywords

Cretaceous climate Paleogeography Paleotopography Warm Arctic Climate models 

Notes

Acknowledgements

We thank all of those who have helped in the development of the ideas presented herein. Donald S. Marszalek and Jim Stunkle read drafts and suggested improvements. Robert DeConto’s work on Cretaceous climates originally supported by Grants from the US National Science Foundation. Sascha Flögel’s work was supported by the German Science Foundation (SFB 754 sub-project A7). Ying Song’s work has been supported by the China University of Petroleum (East China) in Qingdao. Andrei Stepashko is supported by the Kosygin Institute of Tectonics and Geophysics, Far East Division, Russian Academy of Sciences.

References

  1. Alder JR, Hostetler SW, Pollard D, Schmittner A (2011) Evaluation of a present-day climate simulation with a new coupled atmosphere–ocean model GENMOM. Geosci Model Dev 4:69–83CrossRefGoogle Scholar
  2. Alley NF, Frakes LA (2003) First known Cretaceous glaciation: Livingston Tillite Member of the Cadna-owie Formation, South Australia. Aust J Earth Sci 50:139–144CrossRefGoogle Scholar
  3. Armor AB, Vereshchagin VN, Vinogradov AP (eds) (1966) Атлас литолого-палеографических карт СССР. Том 3. Триасовый, юрский и меловой периоды (Atlas of the Lithological–Paleogeographical Maps of the USSR. vol III: Triassic, Jurassic and Cretaceous Periods), p 80Google Scholar
  4. Arthur MA, Dean WE, Schlanger SO (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present, pp 504–529Google Scholar
  5. Balukhovsky A, Floegel S, Hay WW, Madison A, Wold CN (2004) A paleogeographic map for the Lower Turonian. https://earthref.org/ERDA/220/
  6. Barclay RS, Wing SL (2016) Improving the Ginkgo CO2 barometer: implications for the early Cenozoic atmosphere. Earth Planet Sci Lett 439:158–171CrossRefGoogle Scholar
  7. Barron EJ (1983) Warm, equable Cretaceous, the nature of the problem. Earth Sci Rev 19:305–338CrossRefGoogle Scholar
  8. Barron EJ, Washington WM (1982) Atmospheric circulation during warm geologic periods: is the equator-to-pole surface-temperature gradient the controlling factor? Geology 10:633–636CrossRefGoogle Scholar
  9. Barron EJ, Washington WM (1984) The role of geographic variables in explaining paleoclimates; results from cretaceous climate model sensitivity studies. J Geophys Res 89:1267–1279CrossRefGoogle Scholar
  10. Barron EJ, Washington WM (1985) Warm Cretaceous climates: high atmospheric CO2 as a plausible mechanism. In: Sundquist ET, Broecker WS (eds). The carbon cycle and atmospheric CO2: natural variations archean to present, pp 546–553Google Scholar
  11. Barron EJ, Thompson SL, Schneider SH (1981a) An ice-free Cretaceous? Results from climate model simulations. Science 212:501–508CrossRefGoogle Scholar
  12. Barron EJ, Harrison CGA, Sloan JL II, Hay WW (1981b) Paleogeography, 180 million years ago to the present. Ecl Geol Helvetiae 74:443–470Google Scholar
  13. Barron EJ, Peterson WH, Pollard D, Thompson S (1993a) Past climate and the role of ocean heat transport: model simulations for the Cretaceous. Paleoceanography 8:785–798CrossRefGoogle Scholar
  14. Barron EJ, Fawcett PJ, Pollard D, Thompson S (1993b) Model simulations of Cretaceous climates: the role of geography and carbon dioxide [and Discussion]. Philos Trans R Soc Lond B Biol Sci 341:307–316CrossRefGoogle Scholar
  15. Barron EJ, Fawcett PJ, Peterson WH, Pollard D, Thompson SL (1995) A ‘simulation’ of Mid-Cretaceous climate. Paleoceanography 10:953–962CrossRefGoogle Scholar
  16. Bely VF (1997) The North Pacific refugium, and the problems of paleofloristics of the Middle Cretaceous in northeastern Asia. Pac Ocean Geol 16/6:102–113 (in Russian: (Белый, В.Ф. (1997) Северо-Тихоокеанский рефугиум и проблемы палеофлоры среднего мела в северо-восточной Азии. Тихокеанская Геология 16/6: 102–113) Google Scholar
  17. Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204CrossRefGoogle Scholar
  18. Bice KL, Norris RD (2002) Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian–Turonian). Paleoceanography.  https://doi.org/10.1029/2002PA000778 CrossRefGoogle Scholar
  19. Bice KL, Huber BT, Norris RD (2003) Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511. Paleoceanography 18(1301):9:1–7.  https://doi.org/10.1029/2002PA000848 CrossRefGoogle Scholar
  20. Bice K, Birgel D, Meyers PA, Dahl KA, Hinrichs K-U, Norris RD (2006) A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21:17.  https://doi.org/10.1029/2005PA001203. PA2002CrossRefGoogle Scholar
  21. Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:201.  https://doi.org/10.3389/fmicb.2013.00201 CrossRefGoogle Scholar
  22. Budyko MI, Ronov AB (1979) Evolution of the atmosphere in the Phanerozoic. Geochemistry 5:643–653 (in Russian: Будыко MИ., Ронов АБ (1979) Эволюция атмосферы в фанерозое. Геохимия. №5: 643–653) Google Scholar
  23. Budyko MI, Ronov AB (1987) History of the earth’s atmosphere. Springer, Heidelberg, 139 ppCrossRefGoogle Scholar
  24. Budyko MI, Ronov AB, Yanshin AL (1985) History of the atmosphere. Gidrometeoizdat 1985:207 (in Russian: Будико, MИ Ронов, АБ Яншин АЛ (1985) История атмосферы. Гидрометеоиздать, 207 C.) Google Scholar
  25. Callander RA (1969) Instability and river channels. J Fluid Mech 36:465–480CrossRefGoogle Scholar
  26. Callander RA (1978) River meandering. Annu Rev Fluid Mech 10:129–158CrossRefGoogle Scholar
  27. Cantrill DJ, Hunter MA (2005) Macrofossil floras of the Latady Basin, Antarctic Peninsula. NZ J Geol Geophys 48:537–553CrossRefGoogle Scholar
  28. Chen L-Q, Li C-S, Chaloner WG, Beerling DJ, Sun Q-G, Collinson ME, Mitchell PL (2001) Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. Am J Bot 88:1309–1315CrossRefGoogle Scholar
  29. Chumakov NM (1995) The problem of the warm biosphere. Stratigr Geol Correl 3:205–215Google Scholar
  30. Chumakov NM (2004) Climatic zones and climate of the Cretaceous period. In: Semikhatov MA, Chumakov NM (eds) Climate in the epochs of major biospheric transformations. Transactions of the Geological Institute of the Russian Academy of Sciences, vol 550. Nauka, Moscow, pp 105–123 (in Russian) Google Scholar
  31. Chumakov NM, Zharkov MA, Herman AB, Doludenko MP, Kalandadze NN, Lebedev EA, Ponomarenko AG, Rautian AS (1995) Climate belts of the Mid-Cretaceous time. Stratigr Geol Correl 3:241–260Google Scholar
  32. Cloetingh S, Haq BU (2015) Inherited landscapes and sea level change. Science 347:1258375CrossRefGoogle Scholar
  33. Conrad CP (2013) The solid Earth’s influence on sea level. GSA Bull 125:1027–1052.  https://doi.org/10.1130/B30764.1 CrossRefGoogle Scholar
  34. Constantine JA, Dunne TS, Piégay H, Kondolf GM (2010) Controls on the alluviation of oxbow lakes by bed-material load along the Sacramento River, California. Sedimentology 57:389–407CrossRefGoogle Scholar
  35. Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci 97:13430–13435CrossRefGoogle Scholar
  36. Davies NS, Gibling MR, Rygel MC (2011) Alluvial facies evolution during the Palaeozoic greening of the continents: case studies, conceptual models and modern analogues. Sedimentology 58:220–258CrossRefGoogle Scholar
  37. DeConto RM (1996) Late Cretaceous climate, vegetation and ocean interactions, an Earth system approach to modeling an extreme climate [Ph.D. Thesis]: Boulder, University of Colorado, p 236Google Scholar
  38. DeConto RM, Hay WW, Bergengren JC (1998) Modeling Late Cretaceous climate and vegetation. Zent Geol Paläontol 1996(11/12):1433–1444Google Scholar
  39. DeConto RM, Hay WW, Thompson SL, Bergengren J (1999) Late Cretaceous climate and vegetation interactions: the cold continental interior paradox. In: Barrera E, Johnson C (eds) Evolution of the Cretaceous Ocean/climate system, vol 332. Geological Society of America Special Paper, Boulder, pp 391–406Google Scholar
  40. DeConto RM, Brady E, Bergengren J, Hay WW (2000a) Late Cretaceous climate, vegetation, and ocean interactions. In: Huber BT, MacLeod KG, Wing SL (eds) Warm Climates in Earth History. Cambridge University Press, Cambridge, pp 275–297Google Scholar
  41. DeConto RM, Thompson SL, Pollard D (2000b) Recent advances in paleoclimate modeling: toward better simulations of warm paleoclimates. In: Huber BT, MacLeod KG, Wing SL (eds) Warm Climates in Earth History. Cambridge University Press, Cambridge, pp 21–49Google Scholar
  42. DeConto RM, Galeotti S, Pagani M, Tracy D, Schaefer K, Zhang T, Pollard D, Bee DJ (2012a) Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484:87–91CrossRefGoogle Scholar
  43. DeConto RM, Galeotti S, Pagani M, Tracy D, Schaefer K, Zhang T, Pollard D, Bee DJ (2012b) Corrigendum: Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 490:292CrossRefGoogle Scholar
  44. DeLurio JL, Frakes LA (1999) Glendonites as a paleoenvironmental tool: implications for early Cretaceous high latitude climates in Australia. Geochim Cosmochim Acta 63:1039–1048CrossRefGoogle Scholar
  45. DeMeo J (1989) Desert expansion and drought: environmental crisis, Part I. J Orgonom 23:15–26Google Scholar
  46. Dewey JF, Burke K (1974) Hot spots and continental breakup: implications for collisional orogeny. Geology 2:57–60CrossRefGoogle Scholar
  47. Donnadieu Y, Pierrehumbert R, Jacob R, Fluteau F (2006) Modelling the primary control of paleogeography on Cretaceous climate. Earth Planet Sci Lett 248:426–437CrossRefGoogle Scholar
  48. Donnelly TW (1982) Worldwide continental denudation and climatic deterioration during the late Tertiary: evidence from deep-sea sediments. Geology 10:451–454CrossRefGoogle Scholar
  49. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397CrossRefGoogle Scholar
  50. Downing JA, Cole JJ, Duarte CM, Middelburg JJ, Melack JM, Prairie YT, Kortelainen P, Striegl RG, McDowell WH, Tranvik LJ (2012) Global abundance and size distribution of streams and rivers. Inland Waters 2:229–236CrossRefGoogle Scholar
  51. Ellis RJ (2010) Tackling unintelligent design. Nature 463:164–165CrossRefGoogle Scholar
  52. Fisk HN (1944) Geological Investigation of the Alluvial Valley of the Lower Mississippi Valley. Mississippi River Commission Publication 1. US Army Corps of Engineers, Vicksburg, p 78 + 33 platesGoogle Scholar
  53. Floegel S, Hay WW, DeConto RM, Balukhovsky AN (2005) Formation of sedimentary bedding couplets in the Western Interior Seaway of North America—implications from climate system modeling. Palaeogeogr Palaeoclimatol Palaeoecol 218:125–143CrossRefGoogle Scholar
  54. Flögel S (2001) On the influence of precessional Milankovitch cycles on the Late Cretaceous climate system: comparison of GCM-results, geochemical, and sedimentary proxies for the Western Interior Seaway of North America. Doctoral Thesis, Faculty of Mathematics and Natural Sciences of the Christian-Albrecht’s-University, Kiel, Germany, p 236Google Scholar
  55. Flögel S, Parkin G, Pollard D, Dullo W-Chr, Wagner T (2010) Simulating zonal scale shifts in the partitioning of surface and subsurface freshwater flow in response to increasing pCO2. Clim Dyn 37:1565–1573.  https://doi.org/10.1007/s00382-010-0929-5 CrossRefGoogle Scholar
  56. Flögel S, Wallmann K, Poulsen CJ, Zhou J, Oschlies A, Voigt S, Kuhnt W (2011a) Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2). Earth Planet Sci Lett 305:371–384.  https://doi.org/10.1016/j.epsl.2011.03.018 CrossRefGoogle Scholar
  57. Flögel S, Wallmann K, Kuhnt W (2011b) Cool episodes in the Cretaceous—exploring the effects of physical forcings on Antarctic snow accumulation. Earth Planet Sci Lett 307:279–288CrossRefGoogle Scholar
  58. Frakes LA, Francis JE (1988) A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature 333:547–549CrossRefGoogle Scholar
  59. Francis JE, Poole I (2002) Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeogr Palaeoclimatol Palaeoecol 182:47–64CrossRefGoogle Scholar
  60. Francis JE, Pirrie D, Crame JA (eds) (2006) Cretaceous-tertiary high-latitude palaeoenvironments, James Ross Basin, Antarctica, vol 258. Geological Society, London, Special Publications, London, p 200. ISBN-10: 1862391971, ISBN-13: 978-1862391970Google Scholar
  61. Fredsøe J (1978) Meandering and braiding of rivers. J Fluid Mech 84:609424CrossRefGoogle Scholar
  62. Grasby SF, McCune GE, Beauchamp B, Galloway JM (2017) Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic. Geol Soc Am Bull B31600-1:17.  https://doi.org/10.1130/B31600.1 CrossRefGoogle Scholar
  63. Greiner B, Neugebauer J (2013) The rotations opening the Central and Northern Atlantic Ocean: compilation, drift lines, and flow lines. Int J Earth Sci 102:1357–1376CrossRefGoogle Scholar
  64. Greinert J, Derkachev A (2004) Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: implications of a venting-related ikaite/glendonite formation. Mar Geol 204:129–144CrossRefGoogle Scholar
  65. Hansen KW, Wallman K (2003) Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: a model perspective. Am J Sci 303:94–148CrossRefGoogle Scholar
  66. Haq BU (2014) Cretaceous eustasy revisited. Glob Planet Change 113:44–58CrossRefGoogle Scholar
  67. Harrison CGA, Miskell KJ, Brass GW, Saltzman ES, Sloan IIJA (1983) Continental hypsography. Tectonics 2:357–377CrossRefGoogle Scholar
  68. Hasegawa H, Tada R, Jiang X, Suganuma Y, Imsamut S, Charusiri P, Ichinnorov N, Khand Y (2012) Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse. Clim Past 8:1323–1337CrossRefGoogle Scholar
  69. Hay WW (1981) Sedimentological and geochemical trends resulting from the breakup of Pangaea. Oceanol Acta 4/Suppl:135–147Google Scholar
  70. Hay WW (1994) Pleistocene-Holocene fluxes are not the earth’s norm. In: Hay WW, Usselmann T (eds) Material fluxes on the surface of the earth. Studies in geophysics. National Academy Press, Washington D.C., pp 15–27Google Scholar
  71. Hay WW (1998) Detrital sediment fluxes from continents to oceans. Chem Geol 145:287–323CrossRefGoogle Scholar
  72. Hay WW (2008) Evolving ideas about the Cretaceous climate and ocean. Cretac Res 29:725–753CrossRefGoogle Scholar
  73. Hay WW (2009) Cretaceous oceans and ocean modelling. In: Hu X, Wang C, Scott RW, Wagreich M, Jansa L (eds) Cretaceous oceanic red beds: stratigraphy, composition, origins and paleoceanographic and paleoclimatic significance, vol 91. SEPM (Society for Sedimentary Geology) Special Publication, Tulsa, pp 243–271 (ISBN 978-1-56576-135-3) Google Scholar
  74. Hay WW (2016) Experimenting on a small planet. A history of scientific discoveries, a future of climate change and global warming. Springer, Berlin, p 819Google Scholar
  75. Hay WW (2017) Toward understanding Cretaceous climate—an updated review. Sci China Earth Sci 60:5–19CrossRefGoogle Scholar
  76. Hay WW, Floegel S (2012) New thoughts about the Cretaceous climate and oceans. Earth Sci Rev 115:262–272CrossRefGoogle Scholar
  77. Hay WW, Leslie MA (1990) Could possible changes in global groundwater reservoir cause eustatic sea-level fluctuations? In: Revelle R (ed) (Panel Chairman), Sea—level change. National Academy Press, Washington D.C., pp 161–170Google Scholar
  78. Hay WW, Southam JR (1977) Modulation of marine sedimentation by the continental shelves. In: Anderson NR, Malahoff A (eds) The fate of fossil fuel CO2 in the oceans. Marine science series 6. Plenum Press, New York, pp 569–604Google Scholar
  79. Hay WW, Usselmann T (eds) (1994) Material fluxes on the surface of the earth. Studies in geophysics. National Academy Press, Washington D.C., p 185Google Scholar
  80. Hay WW, Barron EJ, Behensky JF Jr, Sloan JLII (1982) Triassic–Liassic paleoclimatology and sedimentation in proto-Atlantic rifts. Palaeogeogr Palaeoclimatol Palaeoecol 40:13–30CrossRefGoogle Scholar
  81. Hay WW, Shaw CA, Wold CN (1989) Mass-balanced paleogeographic maps: background and input requirements. In: Cross T (ed) Quantitative dynamic stratigraphy. Plenum Press, New York, pp 261–275Google Scholar
  82. Hay WW, Eicher DL, Diner R (1993) Physical oceanography and water masses of the Cretaceous Western Interior Seaway. In: Caldwell WEG, Kauffman EG (eds) Evolution of the Western Interior Basin, vol 39. Geological Association of Canada, Special Paper, Canada, pp 297–318Google Scholar
  83. Herman AB (1994) A review of late Cretaceous Floras and climates of Arctic Russia. In: Boulter MC, Fischer HC (eds) Cenozoic plants and climates of the Arctic. Springer, Berlin, pp 127–149CrossRefGoogle Scholar
  84. Herman AB (1999a) Cretaceous flora of the Anadyr–Koryak subregion (North-Eastern Russia) systematic composition, age, stratigraphic and florogenic significance [Герман А.Б., (1999) Меловая флора Анадырско-Корякского субрегиона (Северо-Восток России): систематический состав возраст, стратиграфическое и флорогенетическое значение]. Trans Russ Acad Sci Geol Inst 529:122 (in Russian) Google Scholar
  85. Herman AB (1999b) Composition and age of the Grebenka Flora from the Anadyr River area (the Middle Cretaceous, North-eastern Russia). Stratigr Geol Correlat 7:265–278 (in Russian: Герман А.Б, (1999) Состав и возраст флоры Гребенки из района реки Анадырь (средний мел, северо-восток России. Стратиграфия. Геологическая корреляция 7: 265–278 C) Google Scholar
  86. Herman AB, Spicer RA (1996) Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380:330–333CrossRefGoogle Scholar
  87. Herman AB, Spicer RA (1997) New quantitative palaeoclimate data for the Late Cretaceous Arctic: evidence for a warm polar ocean. Palaeogeogr Palaeoclimatol Palaeoecol 128:227–251CrossRefGoogle Scholar
  88. Herman AB, Spicer RA (2010) Mid-Cretaceous floras and climate of the Russian high Arctic (Novosibirsk Islands, Northern Yakutiya). Palaeogeogr Palaeoclimatol Palaeoecol 295:409–422CrossRefGoogle Scholar
  89. Hill RD, Rinker RG, Wilson HD (1980) Atmospheric nitrogen fixation by lightning. J Atmos Sci 37:179–192CrossRefGoogle Scholar
  90. Houghton JT, Jenkyns GJ, Ephraums JJ (1990) Climate change—the IPCC assessment. Cambridge University Press, Cambridge, 365 ppGoogle Scholar
  91. Huang Y, Shahabadi MB (2014) Why logarithmic? A note on the dependence of radiative forcing on gas concentration. J Geophys Res Atmos 119:13,683–13,689.  https://doi.org/10.1002/2014JD022466 CrossRefGoogle Scholar
  92. Iglesias A, Zamuner AB, Poiré G, Larriestra F (2007) Diversity, taphonomy and palaeoecology of an angiosperm flora from the Cretaceous (Cenomanian–Coniacian) in southern Patagonia. Argent Palaeontol 50:445–466CrossRefGoogle Scholar
  93. Jackson JR (1834) Hints on the subject of geographical arrangement and nomenclature. J R Geogr Soc Lond 4:72–88Google Scholar
  94. Jacobs DK, Sahagian DL (1993) Climate induced fluctuations in sea level during non-glacial times. Nature 361:710–712CrossRefGoogle Scholar
  95. Jacobs DK, Sahagian DL (1995) Milankovitch fluctuations in sea level and recent trends in sea-level change: ice may not always be the answer. In: Haq BU (ed) Sequence stratigraphy and depositional response to eustatic, tectonic and climatic forcing. Kluwer Academic Publishers, Dordrecht, pp 329–366CrossRefGoogle Scholar
  96. Jensen RG (2000) Activation of Rubisco regulates photosynthesis at high temperature and CO2. Proc Natl Acad Sci 97:12937–12938CrossRefGoogle Scholar
  97. Kaplan JO (2001) Geophysical applications of vegetation modeling. Ph.D. Thesis, Lund University, Lund, Sweden, p 129Google Scholar
  98. Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and Arctic ecosystems: 2. modeling, paleodata-model comparisons, and future projections. J Geophys Res 108(D19):8171.  https://doi.org/10.1029/2002JD002559 CrossRefGoogle Scholar
  99. Kazmin VG, Napatov LM (eds) (1998) Палеогеографическая Атлас Северного Евразия—Paleogeographic Atlas of Northern Eurasia: Institute of Tectonics of the Lithospheric Plates. Russian Academy of Natural Sciences, Moscow (20 maps + legend) Google Scholar
  100. Kemper E (1987) Das Klima der Kreide-Zeit. Geol Jahrbuch Reihe A 96:185 ppGoogle Scholar
  101. Kemper E, Schmitz HH (1981) Glendonite ~ Indikatoren des polarmarinen Ablagerungsmilieus. Geol Rundsch 70:759–778CrossRefGoogle Scholar
  102. Kidder DL, Worsley TR (2010) Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 295:162–191CrossRefGoogle Scholar
  103. Kidder DL, Worsley TR (2012) A human-induced hothouse climate? GSA Today 22/2:11.  https://doi.org/10.1130/G131A.1 CrossRefGoogle Scholar
  104. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Raschet PJ (1998) The National Center for Atmospheric Research Community Climate Model: CCM3*. J Clim 11:1131–1149CrossRefGoogle Scholar
  105. Kinsman DJJ (1975) Rift valley basins and sedimentary history of trailing continental margins. In Fischer AG, Judson S (eds) Petroleum and global tectonics. Princeton University Press, Princeton, pp 83–126Google Scholar
  106. Koch BE (1964) Review of fossil floras and nonmarine deposits of West Greenland. Geol Soc Am Bull 75:535–548CrossRefGoogle Scholar
  107. Krause DW, Rogers RR, Forster CA, Hartman JH, Buckley GA, Sampson SD (1999) The Late Cretaceous Vertebrate Fauna of Madagascar: implications for Gondwanan Paleobiogeography. GSA Today 9(8):1–7Google Scholar
  108. Krause DW, O’Connor PM, Rogers KC, Sampson SD, Buckley GA, Rogers RR (2006) Late Cretaceous terrestrial vertebrates from Madagascar: implications for Latin American biogeography. Ann Missouri Bot Garden 93:178–208CrossRefGoogle Scholar
  109. Kump LR, Pollard D (2008) Amplification of Cretaceous warmth by biological cloud feedbacks. Science 320:195CrossRefGoogle Scholar
  110. Latrubesse EM (2008) Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology 101:130–145CrossRefGoogle Scholar
  111. Leeder M (2007) Cybertectonic Earth and Gaia’s weak hand: sedimentary geology, sediment cycling and the Earth system. J Geol Soc 164:277–296CrossRefGoogle Scholar
  112. Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127CrossRefGoogle Scholar
  113. Leopold L (1953) Downstream change in velocity of rivers. Am J Sci 251:606–624CrossRefGoogle Scholar
  114. Leopold LB, Wolman MG (1957) River channel patterns—braided, meandering, and straight. US Geol Surv Profess Pap 282B:39–85Google Scholar
  115. Leopold L, Wolman MG (1960) River meanders. Geol Soc Am Bull 71:769–794CrossRefGoogle Scholar
  116. Li W, Li L, Fu R, Deng Y, Wang H (2011) Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the Southeastern United States. J Clim 24:1499–1506CrossRefGoogle Scholar
  117. Li W, Li L, Ting M, Liu Y (2012) Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat Geosci 5:830–834CrossRefGoogle Scholar
  118. Liu L, Spasojević S, Gurnis M (2008) Reconstructing Farallon Plate subduction beneath North America back to the Late Cretaceous. Science 322:934–938CrossRefGoogle Scholar
  119. Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU, Beckmann R, Hayer-Hartl M (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463:197–202CrossRefGoogle Scholar
  120. Liu S, Nummedal D, Liu L (2011) Migration of dynamic subsidence across the Late Cretaceous United States Western Interior Basin in response to Farallon plate subduction. Geology 39:555–558CrossRefGoogle Scholar
  121. Makaske B (2001) Anastomosing rivers: a review of their classification, origin and sedimentary products. Earth Sci Rev 53:149–196CrossRefGoogle Scholar
  122. Manfroi J, Dutra TL, Gnædinger S, Uhl D, Jasper A (2015) The first report of a Campanian palaeo-wildfire in the West Antarctic Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 418:12–18CrossRefGoogle Scholar
  123. Markwick PJ, Valdes PJ (2004) Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (Late Cretaceous) example. Palaeogeogr Palaeoclimatol Palaeoecol 213:37–63CrossRefGoogle Scholar
  124. Markwick PJ, Rowley DB, Ziegler AM, Hulver P, Valdes PJ, Sellwood BJ (2000) Late Cretaceous and Cenozoic global palaeogeographies: mapping the transition from a “hot-house” to an “ice-house” world. GFF 122:103CrossRefGoogle Scholar
  125. Melton JR, Wania R, Hodson EL, Poulter B, Ringval B, Spahni R, Bohn T, Avis CA, beerling DJ, Chan G, Eliseev AV, Denisov SN, Hopcroft DO, Lettemmaier DP, Riley WJ, Singarayer JS, Subin ZM, Tian H, Zürcher, Brovkin V, van Bodegom PM, Kleinen T, Yu ZC, Kaplan JO (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10:753–788.  https://doi.org/10.5194/bg-10-753-2013 CrossRefGoogle Scholar
  126. Miller KG (2009) Broken greenhouse windows. Nat Geosci 2:465–466CrossRefGoogle Scholar
  127. Miller KG, Sugarman PJ, Browning JV, Kominz MA, Hernández JC, Olsson RK, Wright JD, Feigenson MD, Van Sickel W (2003) Late Cretaceous chronology of large, rapid sea-level changes: glacioeustasy during the greenhouse world. Geology 31:585–588CrossRefGoogle Scholar
  128. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The phanerozoic record of global sea-level change. Science 310:1293–1298CrossRefGoogle Scholar
  129. Müller RD, Sdrolias M, Gaina C, Steinberger B, Heine C (2008) Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319:1357–1362CrossRefGoogle Scholar
  130. Mutterlose J, Bornemann A, Herrle J (2008) The Aptian–Albian cold snap: evidence for “mid” Cretaceous icehouse interludes. Neues Jahrbuch Geol Paläontol Abhandlungen 252:217–225CrossRefGoogle Scholar
  131. Neugebauer J, Greiner B (2014) Reply to: Frisch and Dawes (DOI 10.1007/s00531-013-0980–7) discussion on the rotations opening the Central and Northern Atlantic Ocean: compilation, drift lines, and flow lines (DOI 10.1007/s00531-012-0860-6). Int J Earth Sci 103:971–976CrossRefGoogle Scholar
  132. Niezgodzki I, Knorr G, Lohmann G, Tyszka J, Markwick PJ (2017) Late Cretaceous climate simulations with different CO2 levels and subarctic gateway configurations: a model-data comparison. Paleoceanography 32:19.  https://doi.org/10.1002/2016PA003055 CrossRefGoogle Scholar
  133. Nordenskiöld AE (1870) Redogörelse för en expedition till Grönland ar 1870. Kongliga Svenska Aakademie Ofversikt 10:923–1082Google Scholar
  134. Nordenskiöld A (1872) I—Account of an expedition to Greenland in the year 1870. Geol Mag 9:289–306.  https://doi.org/10.1017/S001675680046513 CrossRefGoogle Scholar
  135. Norris RD, Bice KL, Magno EA, Wilson PA (2002) Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30:299–302CrossRefGoogle Scholar
  136. Otto-Bliesner BL, Upchurch GR Jr (1997) Vegetation-induced warming of high-latitude regions during the Late Cretaceous period. Nature 385:804–807CrossRefGoogle Scholar
  137. Parrish JT, Spicer RA (1988) Late Cretaceous terrestrial vegetation: a near-polar temperature curve. Geology 16:22–25CrossRefGoogle Scholar
  138. Pauly H (1963) “Ikaite” a new mineral from Greenland. Arctic 16:263–264CrossRefGoogle Scholar
  139. Poole I (2000) Fossil angiosperm wood; its role in reconstruction of biodiversity and palaeoenvironment. Int J Linnean Soc 134:361–381CrossRefGoogle Scholar
  140. Poole I, Cantrill DJ (2006) Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record. Geol Soc Lond Spec Publ 258:63–81CrossRefGoogle Scholar
  141. Poole I, Francis JE (2000) The first record of fossil wood of Winteraceae from the Upper Cretaceous of Antarctica. Ann Bot 85:307–315CrossRefGoogle Scholar
  142. Poole I, Richter HG, Francis JE (2000) Evidence for Gondwanan origins for Sassafras (Lauraceae)? Late Cretaceous fossil wood of Antarctica. IAWA J 21:463–475CrossRefGoogle Scholar
  143. Price GD, Nunn EV (2010) Valanginian isotope variation in glendonites and belemnites from Arctic Svalbard: transient glacial temperatures during the Cretaceous greenhouse. Geology 38:251–254CrossRefGoogle Scholar
  144. Ramanathan V, Vogelmann AM (1997) Greenhouse effect, atmospheric solar absorption and the earth’s radiation budget: from the Arrhenius–Langley Era to the 1990s. Ambio 26:38–46Google Scholar
  145. Retallack GJ (2001) A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411:287–290CrossRefGoogle Scholar
  146. Rodellas VI, Garcia-Orellanaa J, Masquéa P, Feldmane M, Weinsteine Y (2015) Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proc Natl Acad Sci 112:3926–3930CrossRefGoogle Scholar
  147. Rogers JJW, Santosh M (2013) Supercontinents in Earth history. Gondwana Res 6:357–368CrossRefGoogle Scholar
  148. Rogov MA, Zakharov VA (2010) Jurassic and lower Cretaceous glendonite occurrences and their implication for Arctic paleoclimate reconstructions and stratigraphy. Earth Sci Front 17:345–347Google Scholar
  149. Ronov AB (1982) The Earth’s sedimentary shell (quantitative patterns of its structure, composition, and evolution). Int Geol Rev 24:1313–1363, 1365–1388CrossRefGoogle Scholar
  150. Ronov AB (1993) Стратисфера—Или Осадочная Оболочка Земли (количественное исследование) [Stratisphere—or Sedimentary Shell of the Earth (quantitative research)]. Nauka, Moscow, p 144 (ISBN 5-02-003117-8) Google Scholar
  151. Ronov AB (1994) Phanerozoic transgressions and regressions on the continents; a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. Am J Sci 294:777–801CrossRefGoogle Scholar
  152. Ronov AB, Khain VE, Seslavinsky KB (1984) Atlas of lithological–paleogeographical maps of the world: late Precambrian and Paleozoic of continents. Leningrad, Leningradskoe kartograficheskoe fabrike. VSEGEI 1984:70Google Scholar
  153. Ronov AB, Khain VE, Balukhovsky AN (1989) In: Barsukhov VL, Laviorov NP (eds) Atlas of Lithological–paleogeographical maps of the world: mesozoic and cenozoic of continents and oceans. Editorial Publishing Group, Moscow, p 79Google Scholar
  154. Rosgen DL (1994) A classification of natural rivers. Catena 22:169–199CrossRefGoogle Scholar
  155. Royer DL, Berner RA, Beerling DJ (2001) Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci Rev 54:349–392CrossRefGoogle Scholar
  156. Royer DL, Berner RA, Park J (2007) Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 466:530–532CrossRefGoogle Scholar
  157. Royer DL, Pagani M, Beerling DJ (2012) Geobiological constraints on earth system sensitivity to CO2 during the Cretaceous and Cenozoic. Geobiology 10:298–310CrossRefGoogle Scholar
  158. Sames B, Wagreich M, Wendler JE, Haq BU, Conrad CP, Melinte-Dobrinescu MC, Hu X, Wendler L, Wolfgring E, Yilmaz I, Zorina SO (2016) Review: short-term sea-level changes in a greenhouse world—a view from the Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol 441:393–411.jCrossRefGoogle Scholar
  159. Schaller M, von Blanckenburg F, Hovius N, Kubik PW (2001) Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth Planet Sci Lett 188:441–458CrossRefGoogle Scholar
  160. Schneider SH, Thompson SL, Barron EJ (1985) Mid-Cretaceous continental surface temperatures: are high CO2 concentrations needed to simulate above-freezing winter conditions?. In: Sundquist ET, Broecker WS (eds). The carbon cycle and atmospheric CO2: natural variations archean to present, pp 554–559Google Scholar
  161. Schultz BP (2009) Pseudomorph after ikaite—called Glendonite is it a geological thermometer in cold sediments or geological oddity as it occurs close to PETM in the Fur formation. IOP Conf Ser Earth Environ Sci 6:P07.47.  https://doi.org/10.1088/1755-1307/6/7/072059 CrossRefGoogle Scholar
  162. Schumm SA (1985) Patterns of alluvial rivers. Annu Rev Earth Planet Sci 13:5–27CrossRefGoogle Scholar
  163. Selleck BW, Carr PF, Jones BG (2007) A review and synthesis of glendonites (pseudomorphs after ikaite) with new data: assessing applicability as recorders of ancient coldwater conditions. J Sedim Res 77:980–991CrossRefGoogle Scholar
  164. Sellers PJ, Bounoua GJ, Collatz DA, Randall DA, Los Dazlich SO, Berry JA, Fung I, Tucker CJ, Field CB, Jensen. TG (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–1406CrossRefGoogle Scholar
  165. Sellwood BW, Valdes PJ (2006) Mesozoic climates: general circulation models and the rock record. Sed Geol 190:269–287CrossRefGoogle Scholar
  166. Sewall JO, van de Wal RSW, van der Zwan K, van Oosterhout C, Dijkstra HA, Scotese CR (2007) Climate model boundary conditions for four Cretaceous time slices. Clim Past 3:647–657CrossRefGoogle Scholar
  167. Shaw CA, Hay WW (1989) Mass-balanced paleogeographic maps: modeling program and results. In: Cross T (ed) Quantitative dynamic stratigraphy. Plenum Press, New York, pp 277–291Google Scholar
  168. Sloan LC, Barron EJ (1990) Equable climates during earth history. Geology 18:489–492CrossRefGoogle Scholar
  169. Sloan LC, Pollard D (1998) Polar stratospheric clouds: a high latitude warming mechanism in an ancient greenhouse world. Geophys Res Lett 25:3517–3520CrossRefGoogle Scholar
  170. Smith A, Briden J (1977) Mesozoic cenozoic paleocontinental maps. Cambridge University Press, Cambridge, p 64Google Scholar
  171. Song Y, Ren J, Stepashko AA, Li J (2014) Post-rift geodynamics of the Songliao Basin, NE China: origin and significance of T11 (Coniacian) unconformity. Tectonophysics 634:1–18CrossRefGoogle Scholar
  172. Song Y, Stepashko AA, Ren J (2015) The Cretaceous climax of compression in Eastern Asia: u age 87–89 Ma (late Turonian/Coniacian), Pacific cause, continental consequences. Cretac Res 55:262–284CrossRefGoogle Scholar
  173. Southam JR, Hay WW (1981) Global sedimentary mass balance and sea level changes. In: Emiliani C (ed) The sea, “The Oceanic Lithosphere”: 1617–1684, 10 tables, 20 figs. Wiley, New YorkGoogle Scholar
  174. Spicer RA, Herman AB (2010) The Late Cretaceous environment of the Arctic: a quantitative reassessment based on plant fossils. Paleogeogr Paleoclimatol Paleoecol 295:423–442CrossRefGoogle Scholar
  175. Spicer RA, Parrish JT (1987) Plant megafossils, vertebrate remains, and paleoclimate of the Kogosukruk Tongue (Late Cretaceous), North Slope, Alaska. US Geol Surv Circ 993(1987):47–48Google Scholar
  176. Spicer RA, Ahlberg A, Herman AB, Kelley SP, Raikevich MI, Rees PM (2002) Palaeoenvironment and ecology of the middle Cretaceous Grebenka flora of northeastern Asia. Paleogeogr Paleoclimatol Paleoecol 184:65–105CrossRefGoogle Scholar
  177. Spicer RA, Ahlberg A, Herman AB, Hofmann C-C, Raikevich M, Valdes PJ, Markwick PJ (2008) The Late Cretaceous continental interior of Siberia: a challenge for climate models. Earth Planet Sci Lett 267:228–235CrossRefGoogle Scholar
  178. Stepashko AA (2009) Cretaceous seamounts: record of the extension history of the Pacific plate. In: Marturino L, Puopolo K (eds) New oceanography research developments: marine chemistry, ocean floor analyses and marine phytoplankton, pp 249–267Google Scholar
  179. Stølum H-H (1998) Platform geometry and dynamics of meandering rivers. Geol Soc Am Bull 110:185–198CrossRefGoogle Scholar
  180. Suess E (2014) Marine cold seeps and their manifestations: geological control, biogeo-chemical criteria and environmental conditions. Int J Earth Sci 103:1889–1916.  https://doi.org/10.1007/s00531-014-1010-0 CrossRefGoogle Scholar
  181. Suess E, Balzer W, Hesse K-F, Müller PJ, Ungerer CA, Wefer G (1982) Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic shelf: precursors of glendonites. Science 216:1128–1131CrossRefGoogle Scholar
  182. Tarduno JSA, Brinkman DB, Renne PR, Cottrell RD, Scher H, Castillo P (1998) Evidence for extreme climatic warmth from Late Cretaceous Arctic Vertebrates. Science 282:2241–2244CrossRefGoogle Scholar
  183. Teichert BMA, Luppold FW (2013) Glendonites from an Early Jurassic methane seep—climate or methane indicators? Palaeogeogr Palaeoclimatol Palaeoecol 390:81–93CrossRefGoogle Scholar
  184. Termier H, Termier G (1952) Histoire géologique de la Biosphére. Masson & Cie, Paris, 721 ppGoogle Scholar
  185. Termier H, Termier G (1960) Atlas de Paléogéographie. Masson & Cie, Paris, 99 ppGoogle Scholar
  186. Thompson SL, Pollard D (1995a) A global climate model (GENESIS) with a land-surface transfer scheme (LSX). Part I: Present climates simulation. J Clim 8:732–761CrossRefGoogle Scholar
  187. Thompson SL, Pollard D (1995b) A global climate model (GENESIS) with a land-surface transfer scheme (LSX). Part 2: CO2 sensitivity. J Clim 8:1104–1121CrossRefGoogle Scholar
  188. Thompson SL, Pollard D (1997) Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS version-2 global climate model. J Clim 10:871–900CrossRefGoogle Scholar
  189. Thorne BL, Grimaldi DA, Krishna K (2000) Early fossil history of the termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Springer, Dordrecht, pp 77–94CrossRefGoogle Scholar
  190. Turner RE, Rabalais NN (2003) Linking landscape and water quality in the Mississippi River basin for 200 years. Bioscience 53:563–572CrossRefGoogle Scholar
  191. Upchurch GR Jr, Otto-Bliesner BL, Scotese CR (1998) Vegetation–atmosphere interactions and their role in global warming during the latest Cretaceous. Philos Trans R Soc Lond Ser B 353:97–112CrossRefGoogle Scholar
  192. Upchurch GR Jr, Otto-Bliesner BL, Scotese CR (1999) Terrestrial vegetation and its effects on climate during the latest Cretaceous.. In: Barrera E, Johnson C (eds) Evolution of the cretaceous ocean/climate system, vol 332. Geological Society of America Special Paper, Boulder, pp 407–426Google Scholar
  193. Upchurch GR Jr, Kiehl J, Shields C, Scherer J, Scotese C (2015) Latitudinal temperature gradients and high-latitude temperatures during the latest Cretaceous: congruence of geologic data and climate models. Geology 43:683–686.  https://doi.org/10.1130/G36802.1 CrossRefGoogle Scholar
  194. Veizer J, Godderis Y, François LM (2000) Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408:698–701CrossRefGoogle Scholar
  195. Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402.  https://doi.org/10.1002/2014GL060641 CrossRefGoogle Scholar
  196. Von Blanckenburg F (2005) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 237:462–479CrossRefGoogle Scholar
  197. Wagreich M, Lein R, Sames B (2014) Eustasy, its controlling factors, and the limno-eustatic hypothesis—concepts inspired by Eduard Suess. Aust J Earth Scis 107:115–131Google Scholar
  198. Wagreich M, Haq BU, Melinte-Dobrinescu MC, Sames B, Yilmaz I (2016) Advances and perspectives in understanding Cretaceous sea-level change. Palaeogeogr Palaeoclimatol Palaeoecol 441:391–392CrossRefGoogle Scholar
  199. Wallmann K (2001) Controls on Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim Cosmochim Acta 65:3005–3025CrossRefGoogle Scholar
  200. Wan C-B, Wang D-H, Zhu Z-P, Quan C (2011) Trend of Santonian (Late Cretaceous) atmospheric CO2 and global mean land surface temperature: evidence from plant fossils. Sci China Earth Sci 54:1338–1345CrossRefGoogle Scholar
  201. Wang Y, Huang C, Sun B, Quan C, Wu J, Lin Z (2014) Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth Sci Rev 129:136–147CrossRefGoogle Scholar
  202. Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M, Jeandel C, Leinfelder R, McNeill JR, Richter DdeB, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, Zhisheng A, Grinevald J, Odada E, Oreskes N, Wolfe AP (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:1–10CrossRefGoogle Scholar
  203. Wendler J, Wendler I (2016) What drove sea-level fluctuations during the mid-Cretaceous greenhouse climate? Palaeogeogr Palaeoclimatol Palaeoecol 441:412–419CrossRefGoogle Scholar
  204. Wendler J, Wendler I, Vogt C, Kuss J (2016) Link between cyclic eustatic sea-level change and continental weathering: evidence for aquifer-eustasy in the Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol 441:430–437CrossRefGoogle Scholar
  205. Wold CN, Hay WW (1993) Reconstructing the age and lithology of eroded sediment. Geoinformatics 4:137–144CrossRefGoogle Scholar
  206. Wold CN, Shaw CA, Hay WW (1993) Mass-balanced reconstruction of overburden. In: Harff J, Merriam DF (eds) Computerized basin analysis: the prognosis of energy and mineral resources. Plenum Press, New York, pp 115–130CrossRefGoogle Scholar
  207. Wolfe JA (1993) A method of obtaining climatic parameters from leaf assemblages. US Geol Surv Bull 2040:73Google Scholar
  208. Wolfe JA (1995) Paleoclimatic estimates from Tertiary leaf assemblages. Annu Rev Earth Planet Sci 23:119–142CrossRefGoogle Scholar
  209. Zharkov MA, Murdmaa IO, Filatova NI (1998) Paleogeography of the Coniacian–Maastrichtian Ages of the Late Cretaceous. Stratigr Geol Correl 6/3:209–221Google Scholar
  210. Ziegler AM, Scotese CR, Barrett SF (1982) Mesozoic and cenozoic paleogeographic maps. In: Brosche P, Sündermann J (eds) Tidal friction and earth’s rotation II. Springer, Berlin, pp 240–252CrossRefGoogle Scholar
  211. Ziegler AM, Rowley DB, Lottes AL, Sahagian DL, Hulver ML, Gierlowski TC (1985) Paleogeographic interpretation: with an example from the Mid-Cretaceous. Ann Rev Earth Planet Sci 13:385–425CrossRefGoogle Scholar

Copyright information

© Geologische Vereinigung e.V. (GV) 2018

Authors and Affiliations

  • William W. Hay
    • 1
  • Robert M. DeConto
    • 2
  • Poppe de Boer
    • 3
  • Sascha Flögel
    • 4
  • Ying Song
    • 5
  • Andrei Stepashko
    • 6
  1. 1.Department of Geological SciencesUniversity of Colorado at BoulderEstes ParkUSA
  2. 2.Department of GeosciencesUniversity of Massachusetts-AmherstAmherstUSA
  3. 3.Sedimentology Group, Department of Earth SciencesUniversity of UtrechtUtrechtThe Netherlands
  4. 4.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  5. 5.Department of GeologyChina University of Petroleum (East China)QingdaoChina
  6. 6.Far East Division, Kosygin Institute of Tectonics and GeophysicsRussian Academy of SciencesKhabarovskRussia

Personalised recommendations