Advertisement

Evolution of the Major Gercino Shear Zone in the Dom Feliciano Belt, South Brazil, and implications for the assembly of southwestern Gondwana

  • Mathias Hueck
  • Miguel Angelo Stipp Basei
  • Klaus Wemmer
  • Sebastián Oriolo
  • Florian Heidelbach
  • Siegfried Siegesmund
Original Paper
  • 10 Downloads

Abstract

The Dom Feliciano Belt developed during the Brasiliano–Pan-African orogenic cycle due to the tectonic interaction between the Rio de la Plata, Congo and Kalahari cratons, along with the amalgamation of smaller continental fragments. Together with its prolongations to the south, the Major Gercino Shear Zone constitutes one of the main lineaments of the orogenic system, establishing a more than 1000 km long NE-trending tectonic boundary between a granitic batholith and a metavolcano-sedimentary association. Based on combined field, structural, microstructural and textural data, together with new and published geochronological data, a refined model for the geological evolution of the Major Gercino Shear Zone is presented. Regional NW-verging, low-dipping structures were generated between 650 and 615 Ma, preceding the formation of the shear zone. This was followed by the main deformation phase, corresponding to pure-shear dominated dextral strike-slip, interpreted do be controlled by regional transpression during oblique convergence of the continental terranes. This stage lasted until ca. 585 Ma and was coeval with the continuous emplacement of granitic magmatism along the structure. Strain partitioning and localization led to the development of mylonitic belts along the intrusion borders mostly under greenschist facies metamorphic conditions. Late-stage ductile deformation along the structure was active during the cooling of the intrusions until ca. 550 Ma, while the deformation front of the orogenic system migrated to counterpart orogenic belts in the African continent. After tectonic stabilization, the Major Gercino Shear Zone recorded episodic brittle reactivation, possibly related to the Phanerozoic evolution of the active margins and intracratonic basins in Gondwana.

Keywords

Dom Feliciano Belt Brasiliano–Pan-African Orogeny Shear zones Gondwana 

Notes

Acknowledgements

M.H. thanks the CNPq for a long-term PhD scholarship from the Sciences without Borders program. M.A.S.B. received funding from FAPESP thematic project 2015/03737-0 for this project. M.H. thanks Claudia R. Passarelli for providing thin sections and Caio A. Santos and Vinícius Z. S. Teixeira for assistance during field work. The authors would also like to thank editors Wolf-Christian Dullo and Soumyajit Mukherjee for the editorial handling and helpful suggestions, and Fernando Hongn and Subhobroto Mazumder for critical comments that helped improve the manuscript.

References

  1. Almeida FFM, Hasui Y, de Brito Neves BB, Fuck RA (1981) Brazilian structural provinces; an introduction. Earth Sci Rev 17(1/2):1–29CrossRefGoogle Scholar
  2. Babinski M, Chemale F, Hartmann LA, Van Schmus WR, Silva LC (1997) U–Pb and Sm-Nd geochronology of the Neoproterozoic granitic-gneissic Dom Feliciano belt, southern Brazil. J South Am Earth Sci 10(3–4):263–274CrossRefGoogle Scholar
  3. Basei MAS (1985) O Cinturão Dom Feliciano em Santa Catarina. Unpublished PhD Thesis, Universidade de São PauloGoogle Scholar
  4. Basei MAS, Siga O Jr, Masquelin H, Harara OM, Reis Neto JM, Preciozzi F (2000) The Dom Feliciano Belt of Brazil and Uruguay and its Foreland Domain the Rio de la Plata Craton: framework, tectonic evolution and correlation with similar provinces of Southwestern Africa. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America, vol 31. IGC, Rio de Janeiro, pp 311–334Google Scholar
  5. Basei MAS, Frimmel HE, Nutman AP, Preciozzi F, Jacob J (2005) The connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and Gariep (Namibia/South Africa) orogenic belts. Precambr Res 139:139–221CrossRefGoogle Scholar
  6. Basei MAS, Campos Neto MC, Castro NA, Santos PR, Siga O Jr, Passarelli CR (2006) SC, Convênio USP-CPRM. In: Mapa Geológico 1:100,000 das Folhas Brusque e Vidal Ramos. XLII Congresso Brasileiro de Geologia, AracajuGoogle Scholar
  7. Basei MAS, Frimmel HE, Nutman AP, Preciozzi F (2008) West Gondwana amalgamation based on detrital zircon ages from Neoproterozoic Ribeira and Dom Feliciano belts of South America and comparison with coeval sequences from SW Africa. In: Pankhurst RJ, Trouw RAJ, Brito Neves BB, de Wit MJ (eds) West Gondwana: pre-cenozoic correlations across the South Atlantic Region, vol 294. Geological Society London, Special Publication, London, pp 239–256Google Scholar
  8. Basei MAS, Nutman A, Siga O Jr, Passarelli CR, Drukas CO (2009) The evolution and tectonic setting of the Luis Alves Microplate of Southeastern Brazil: an exotic terrane during the assembly of Western Gondwana. In: Gaucher C, Sial AN, Halverson GP, Frimmel HE (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology, vol 16, pp 273–291Google Scholar
  9. Basei MAS, Campos Neto MC, Castro NA, Nutman AP, Wemmer K, Yamamoto MT, Hueck M, Osako L, Siga O Jr, Passarelli CR (2011a) Tectonic evolution of the Brusque group, Dom Feliciano belt, Santa Catarina, Southern Brazil. J South Am Earth Sci 32(4):324–350CrossRefGoogle Scholar
  10. Basei MAS, Drukas CO, Nutman A, Wemmer PK, Dunyi L, Santos PR, Passarelli CR, Campos Neto MC, Siga O Jr, Osako L (2011b) The Itajaí foreland basin: a tectono-sedimentary record of the Ediacaran period, Southern Brazil. Int J Earth Sci 100:543–569CrossRefGoogle Scholar
  11. Basei MAS, Peel E, Sánchez Bettucci L, Preciozzi F, Nutman AP (2011c) The basement of the Punta del Este Terrane (Uruguay): an African Mesoproterozoic fragment at the eastern border of the South American Río de la Plata craton. Int J Earth Sci 100:289–304CrossRefGoogle Scholar
  12. Basei MAS, Campos Neto MC, Lopes AP, Nutman AP, Liu D, Sato K (2013) Polycyclic evolution of Camboriú Complex migmatites, Santa Catarina, Southern Brazil: integrated Hf isotopic and U–Pb age zircon evidence of episodic reworking of a Mesoarchean juvenile crust. Braz J Geol 43:427–443CrossRefGoogle Scholar
  13. Basei MAS, Frimmel H, Campos Neto MC, Araújo CA, Castro NA, Passarelli CR (2018) The Tectonic history of the Southern Adamastor ocean based on a correlation of the Kaoko and Dom Feliciano Belts. In: Siegesmund S, Oyhantçabal P, Basei MAS, Oriolo S (eds) Geology of Southwest Gondwana. Regional geology reviews. Springer, Heidelberg, pp 63–85CrossRefGoogle Scholar
  14. Bense FA, Wemmer K, Löbens S, Siegesmund S (2014) Fault gouge analyses: K–Ar illite dating, clay mineralogy and tectonic significance—a study from the Sierras Pampeanas, Argentina. Int J Earth Sci 103:189–218CrossRefGoogle Scholar
  15. Bitencourt MF (1996) Granitóides sintectônicos da região de Porto Belo, SC: uma aboradagem petrológica e estrutural do magmatismo em zonas de cisalhamento. Unpublished PhD thesis, Universidade Federal do Rio Grande do Sul, pp 310Google Scholar
  16. Bitencourt MF, Kruhl JH (2000) Crustal-scale shearing, magmatism and the development of deformation structures: an example from Santa Catarina (Southern Brazil). Z Angew Geol SH1/2000:229–236Google Scholar
  17. Bitencourt MF, Nardi LVS (2000) Tectonic setting and sources of magmatism related to the Southern Brazilian shear Belt. Rev Bras Geociê 30:186–189CrossRefGoogle Scholar
  18. Bitencourt MF, Nardi LVS (2004) The role of xenoliths and flow segregation in the genesis and evolution of the Paleoproterozoic Itapema Granite, a crustally derived magma of shoshonitic affinity from southern Brazil. Lithos 73(1):1–19CrossRefGoogle Scholar
  19. Bitencourt MF, Bongiolo E, Philipp RP, Morales LF, Ruber RR, Melo CL, Luft JL Jr (2008) Estratigrafia do Batólito Florianópolis, Cinturão Dom Feliciano, na Região de Garopaba-Paulo Lopes. Sci Pesquisas Geociê 35:109–136Google Scholar
  20. Bouchez JL, Delas C, Gleizes G, Nedelec A, Cuney M (1992) Submagmatic microfractures in granites. Geology 20:35–38CrossRefGoogle Scholar
  21. Brito Neves BB, Fuck RA (2014) The basement of the South American platform: half Laurentian (N–NW) + half Gondwanan (E–SE) domains. Precambr Res 244:75–86CrossRefGoogle Scholar
  22. Caldasso ALS, Krebs ASJ, Silva MAS, Camozzato E, Ramgrab GE (1995a) Programa de Levantamentos Geológicos Básicos 1: 100,000; Folha Brusque (SG-22-Z-D-II-1), SC. CPRM, BrasíliaGoogle Scholar
  23. Caldasso ALS, Krebs ASJ, Silva MAS, Camozzato E, Ramgrab GE (1995b) Programa de Levantamentos Geológicos Básicos 1: 100,000; Folha Botuverá (SG-22-Z-D-I-2), SC. CPRM, BrasíliaGoogle Scholar
  24. Campos RS, Philipp RP, Massonne HJ, Chemale F (2012) Early post-collisional Brasiliano magmatism in Botuverá region, Santa Catarina, southern Brazil: evidence from petrology, geochemistry, isotope geology and geochronology of the diabase and lamprophyre dikes. J South Am Earth Sci 37:266–278CrossRefGoogle Scholar
  25. Castro NA, Basei MAS, Crósta AP (1999) The W(Sn-Mo) specialized Catinga and other intrusive granitoids in the Brusque group, Neoproterozoic of the state or Santa Catarina, southern Brazil. Rev Bras Geol 29(1):17–26CrossRefGoogle Scholar
  26. Chemale F, Mallmann G, Bitencourt MF, Kawashita K (2012) Time constraints on magmatism along the Major Gercino Shear Zone, southern Brazil: implications for West Gondwana reconstruction. Gondwana Res 22(1):184–199CrossRefGoogle Scholar
  27. Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172(1):5–24CrossRefGoogle Scholar
  28. Cosca MA, Essene EJ, Mezger K, van der Pluijm BA (1995) Constraints on the duration of tectonic processes: protracted extension and deep-crustal rotation in the Grenville orogen. Geology 23(4):361–364CrossRefGoogle Scholar
  29. Costa MS, Nascimento MS (2015) Tratos deposicionais e arquitetura estratigráfica de sucessões sedimentares da Bacia do Itajaí (Neoproterozoico), nordeste de Santa Catarina, Brasil. Geol USP Sér Cie 15(2):111–134CrossRefGoogle Scholar
  30. de Wit MJ, Bowring SA, Ashwal LD, Randrianasolo LG, Morel VP, Rambeloson RA (2001) Age and tectonic evolution of Neoproterozoic ductile shear zones in southwestern Madagascar, with implications for Gondwana studies. Tectonics 20(1):1–45CrossRefGoogle Scholar
  31. Duvall AR, Clark MK, van der Pluijm BA, Li C (2011) Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth Planet Sci Lett 304:520–526CrossRefGoogle Scholar
  32. Egli D, Mancktelow N, Spikings R (2017) Constraints from 40Ar/39Ar geochronology on the timing of Alpine shear zones in the Mont Blanc-Aiguilles Rouges region of the European Alps. Tectonics 36(4):730–748CrossRefGoogle Scholar
  33. Fernandes LAA, Koester E (1999) The Neoproterozoic Dorsal de Canguqii strike-slip shear zone: its nature and role in the tectonic evolution of southern Brazil. J Afr Earth Sci 29(1):3–24CrossRefGoogle Scholar
  34. Fernandes LAD, Tommasi A, Porcher CC (1992) Deformation Patterns in the southern Brazilian branch of the Dom Feliciano Belt: a reappraisal. J South Am Earth Sci 5:77–96CrossRefGoogle Scholar
  35. Florisbal LM, Bitencourt MF, Nardi LVS, Conceição RV (2009) Early postcollisional granitic and coeval mafic magmatism of medium- to high-K tholeiitic affinity within the Neoproterozoic Southern Brazilian Shear Belt. Precambr Res 175:135–148CrossRefGoogle Scholar
  36. Florisbal LM, Janasi VA, Bitencourt MF, Heaman LM (2012a) Space-time relation of post-collisional granitic magmatism in Santa Catarina, southern Brazil: U–Pb LAMC-ICP-MS zircon geochronology of coeval mafic-felsic magmatism related to the Major Gercino Shear Zone. Precambr Res 216–219:132–151CrossRefGoogle Scholar
  37. Florisbal LM, Bitencourt MF, Janasi VA, Nardi LVS, Heaman LM (2012b) Petrogenesis of syntectonic granites emplaced at the transition from thrusting to transcurrent tectonics in post-collisional setting: whole-rock and Sr–Nd–Pb isotope geochemistry in the Neoproterozoic Quatro Ilhas and Mariscal granites, southern Brazil. Lithos 153:53–71CrossRefGoogle Scholar
  38. Florisbal LM, Janasi VA, Bitencourt MF, Nardi LVS, Heaman LM (2012c) Contrasted crustal sources as defined by whole-rock and Sr–Nd–Pb isotope geochemistry of Neoproterozoic early post-collisional granitic magmatism within the Southern Brazilian Shear Belt, Camboriú, Brazil. J South Am Earth Sci 39:24–43CrossRefGoogle Scholar
  39. Fossen H, Cavalcante GCG (2017) Shear zones—a review. Earth Sci Rev 171:434–455CrossRefGoogle Scholar
  40. Foster DA, Goscombe BD, Gray DR (2009) Rapid exhumation of deep crust in an obliquely convergent orogeny: the Kaoko Belt of the Damara Orogen. Tectonics.  https://doi.org/10.1029/2008TC002317 CrossRefGoogle Scholar
  41. Frimmel HE, Basei MAS, Gaucher C (2011) Neoproterozoic geodynamic evolution of SW-Gondwana: a southern African perspective. Int J Earth Sci 100:323–354CrossRefGoogle Scholar
  42. Fuhrmann U, Lippolt HJ, Hess JC (1987) Examination of some proposed K-Ar standards: 40Ar/39Ar analyses and conventional K-Ar-data. Chem Geol 66:41–51Google Scholar
  43. Ghosh JG, de Wit MJ, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tectonics.  https://doi.org/10.1029/2002TC001444 CrossRefGoogle Scholar
  44. Goscombe B, Gray DR (2007) The Coastal Terrane of the Kaoko Belt, Namibia: outboard arc-terrane and tectonic significance. Precambr Res 155(1):139–158CrossRefGoogle Scholar
  45. Goscombe B, Gray DR (2008) Structure and strain variation at mid-crustal levels in a transpressional orogen: a review of Kaoko Belt structure and the character of West Gondwana amalgamation and dispersal. Gondwana Res 13(1):45–85CrossRefGoogle Scholar
  46. Goscombe B, Hand M, Gray D, Mawby J (2003) The metamorphic architecture of a transpressional orogen: the Kaoko Belt, Namibia. J Petrol 44(4):679–711CrossRefGoogle Scholar
  47. Goscombe B, Gray D, Armstrong R, Foster DA, Vogl J (2005) Event geochronology of the Pan-African Kaoko Belt, Namibia. Precambr Res 140:103.e1–103.e41CrossRefGoogle Scholar
  48. Goscombe B, Foster DA, Gray D, Wade B, Marsellos A, Titus J (2017) Deformation correlations, stress field switches and evolution of an orogenic intersection: the Pan-African Kaoko-Damara orogenic junction, Namibia. Geosci Front 8(6):1187–1232CrossRefGoogle Scholar
  49. Grathoff GH, Moore DM (1996) Illite polytype quantification using Wildfire calculated X-ray diffraction patterns. Clays Clay Miner 44(6):835–842CrossRefGoogle Scholar
  50. Gray DR, Foster DA, Goscombe B, Passchier CW, Trouw RAJ (2006) 40Ar/39Ar thermochronology of the Pan-African Damara Orogen, Namibia with implications for tectonothermal and geodynamic evolution. Precambr Res 150:49–72CrossRefGoogle Scholar
  51. Guadagnin F, Chemale F Jr, Dussin IA, Jelinek AR, Santos MN, Borba ML, Justino D, Bertotti AL, Alessandretti L (2010) Depositional age and provenance of the Itajaí Basin, Santa Catarina State, Brazil: implications for SW Gondwana correlation. Precambr Res 180:156–182CrossRefGoogle Scholar
  52. Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT (2009) Diffusion of 40 Ar in muscovite. Geochim Cosmochim Acta 73(4):1039–1051CrossRefGoogle Scholar
  53. Hartmann LA, Porcher CC, Remus MVD (2000) Evolução das rochas metamórficas do Rio Grande do Sul. In: Holz M, De Ros LF (eds) Geologia do Rio Grande do Sul. Editora UFRGS, Porto Alegre, pp 13–52Google Scholar
  54. Hartmann LA, Bitencourt MF, Santos JOS, McNaughton NJ, Rivera CB, Betiollo L (2003) Prolonged Paleoproterozoic magmatic participation in the Neoproterozoic Dom Feliciano belt, Santa Catarina, Brazil, based on zircon U–Pb SHRIMP geochronology. J South Am Earth Sci 16:477–492CrossRefGoogle Scholar
  55. Heilbron M, Machado N (2003) Timing of terrane accretion in the Neoproterozoic–Eopaleozoic Ribeira orogen (SE, Brazil). Precambr Res 125(1–2):87–112CrossRefGoogle Scholar
  56. Heilbron M, Valeriano CM, Tassinari CCG, Almeida J, Tupinambá M, Siga O Jr, Trouw R (2008) Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. Geol Soc Lond Spec Publ 294(1):211–237CrossRefGoogle Scholar
  57. Holz M, Küchle J, Philipp RP, Bischoff AP, Arima N (2006) Hierarchy of tectonic control on stratigraphic signatures: base-level changes during the early Permian in the Paraná Basin, southernmost Brazil. J South Am Earth Sci 22(3):185–204CrossRefGoogle Scholar
  58. Hueck M, Basei MAS, de Castro NA (2016) Origin and evolution of the granitic intrusions in the Brusque Group of the Dom Feliciano Belt, south Brazil: petrostructural analysis and whole-rock/isotope geochemistry. J South Am Earth Sci 69:131–151CrossRefGoogle Scholar
  59. Hueck M, Oriolo S, Dunkl I, Wemmer K, Oyhantçabal P, Schanofski M, Basei MAS, Siegesmund S (2017) Phanerozoic low-temperature evolution of the Uruguayan Shield along the South American passive margin. J Geol Soc Lond 174:609–626CrossRefGoogle Scholar
  60. Hueck M, Oyhantçabal P, Philipp RP, Basei MAS, Siegesmund S (2018a) The Dom Feliciano Belt in Southern Brazil and Uruguay. In: Siegesmund S, Oyhantçabal P, Basei MAS, Oriolo S (eds) Geology of Southwest Gondwana. Regional geology reviews, Springer, Heidelberg, pp 267–302CrossRefGoogle Scholar
  61. Hueck M, Dunkl I, Heller B, Basei MAS, Siegesmund S (2018b) (U-Th)/He thermochronology and zircon radiation damage in the South American passive margin: Thermal overprint of the Paraná LIP? Tectonics.  https://doi.org/10.1029/2018TC005041 CrossRefGoogle Scholar
  62. Hunziker JC, Frey M, Clauer N, Dallmeyer RD, Friedrichsen H, Flehmig W, Hochstrasser K, Roggwiler P, Schwander H (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib Miner Petrol 92(2):157–180CrossRefGoogle Scholar
  63. Jessell MW (1987) Grain-boundary migration microstructures in a naturally deformed quartzite. J Struct Geol 9:1007–1014CrossRefGoogle Scholar
  64. Kilian R, Heilbronner R, Stünitz H (2011) Quartz microstructures and crystallographic preferred orientation: which shear sense do they indicate? J Struct Geol 33(10):1446–1466CrossRefGoogle Scholar
  65. Konopásek J, Kröner S, Kitt SL, Passchier CW, Kröner A (2005) Oblique collision and evolution of large-scale transcurrent shear zones in the Kaoko belt, NW Namibia. Precambr Res 136(2):139–157CrossRefGoogle Scholar
  66. Konopásek J, Košler J, Tajčmanová L, Ulrich S, Kitt SL (2008) Neoproterozoic igneous complex emplaced along major tectonic boundary in the Kaoko Belt (NW Namibia): ion probe and LA-ICP-MS dating of magmatic and metamorphic zircons. J Geol Soc Lond 165(1):153–165CrossRefGoogle Scholar
  67. Konopásek J, Sláma J, Košler J (2016) Linking the basement geology along the Africa-South America coasts in the South Atlantic. Precambr Res 280:221–230CrossRefGoogle Scholar
  68. Konopásek J, Janoušek V, Oyhantçabal P, Sláma J, Ulrich S (2018) Did the circumrodinia subduction trigger the Neoproterozoic rifting along the Congo–Kalahari Craton margin? Int J Earth Sci 107(5):1589–1894CrossRefGoogle Scholar
  69. Koester E, Porcher CC, Pimentel MM, Fernandes LAD, Vignol-Lelarge ML, Oliveira LD, Ramos RC (2016) Further evidence of 777 Ma subduction-related continental arc magmatism in Eastern Dom Feliciano Belt, southern Brazil: the Chácara das Pedras Orthogneiss. J South Am Earth Sci 68:155–166CrossRefGoogle Scholar
  70. Ksienzyk AK, Wemmer K, Jacobs J, Fossen H, Schomberg AC, Süssenberger A, Lünsdorf NK, Bastesen E (2016) Post-Caledonian brittle deformation in the Bergen area, West Norway: results from K-Ar illite fault gouge dating. Norwegian J Geol 96(3):1–25Google Scholar
  71. Kübler B (1967) La cristallinité de l’illite et les zones tout à fait supérieures du métamorphism. Etages Tectonique, Colloque de Neuchâtel, NeuchâtelGoogle Scholar
  72. Leite JAD, Hartmann LA, Fernandes LAD, McNaughton NJ, Soliani E Jr, Koester E, Santos JOS, Vasconcellos MAZ (2000) Zircon U–Pb SHRIMP dating of gneissic basement of the Dom Feliciano Belt, southernmost Brazil. J South Am Earth Sci 13:739–750CrossRefGoogle Scholar
  73. Lenz C, Fernandes LAD, McNaughton NJ, Porcher CC, Masquelin H (2011) U–Pb SHRIMP ages for the Cerro Bori Orthogneisses, Dom Feliciano Belt in Uruguay: evidences of a ~ 800 Ma magmatic and a ~ 650 Ma metamorphic event. Precambr Res 185:149–163CrossRefGoogle Scholar
  74. Lister G, Hobbs BE (1980) The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history. J Struct Geol 2(3):355–370CrossRefGoogle Scholar
  75. Mantovani MSM, Shukowski W, Basei MAS, Vasconcellos ACBC (1989) Modelos gravimétricos das principais descontinuidades crustais nos terrenos Pré-Cambrianos dos estados do Paraná e Santa Catarina. Rev Bras Geoci 19(3):367–374CrossRefGoogle Scholar
  76. Martini A, Bitencourt MF, Nardi LVS, Florisbal LM (2015) An integrated approach to the late stages of Neoproterozoicpost-collisional magmatism from Southern Brazil: structural geology, geochemistry and geochronology of the Corre-mar Granite. Precambr Res 261:25–39CrossRefGoogle Scholar
  77. Masquelin H, Fernandes LAD, Lenz C, Porcher CC, McNaughton NJ (2012) The Cerro Olivo Complex: a pre-collisional neoproterozoic magmatic arc in eastern Uruguay. Int Geol Rev 54:1161–1183CrossRefGoogle Scholar
  78. Masquelin H, Lara HS, Betucci LS, Demarco PN, Pascual S, Muzio R, Peel E, Scaglia F (2017) Lithologies, structure and basement-cover relationships in the schist belt of the Dom Feliciano Belt in Uruguay. Brazilian J Geol 47(2):21–42CrossRefGoogle Scholar
  79. Merriman RJ, Frey M (1999) Patterns of very low-grade metamorphism in metapelitic rocks. Low-grade metamorphism. In: Frey M, Robinson D (eds) Low-grade metamorphism. Blackwell Science, Oxford, pp 61–107Google Scholar
  80. Milani EJ, Melo JHG, Souza PA, Fernandes LA, França AB (2007) Bacia do Paraná. In: Milani EJ, Rangel HD, Bueno GV, Stica JM, Winter WR, Caixeta JM, Pessoa Neto OC (eds) Bacias Sedimentares Brasileiras. Cartas Estratigráficas: Boletim de Geociências da Petrobras 15, Rio de JaneiroGoogle Scholar
  81. Mukherjee S (2011) Mineral Fish: their morphological classification, usefulness as shear sense indicators and genesis. Int J Earth Sci 100:1303–1314CrossRefGoogle Scholar
  82. Mukherjee S (2013) Deformation microstructures in rocks. Springer, Berlin, p 111 (ISBN 978-3-642-25608-0) CrossRefGoogle Scholar
  83. Mukherjee S (2017) Review on symmetric structures in ductile shea zones. Int J Earth Sci 106:1453–1468CrossRefGoogle Scholar
  84. Mukherjee S, Koyi HA (2010a) Higher Himalayan Shear Zone, Sutlej Section—structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. Int J Earth Sci 99:1267–1303CrossRefGoogle Scholar
  85. Mukherjee S, Koyi HA (2010b) Higher Himalayan Shear Zone, Zanskar section—microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. Int J Earth Sci 99:1083–1110CrossRefGoogle Scholar
  86. Oriolo S, Oyhantçabal P, Heidelbach F, Wemmer K, Siegesmund S (2015) Structural evolution of the Sarandí del Yí Shear Zone: kinematics, deformation conditions and tectonic significance. Int J Earth Sci 104:1759–1777CrossRefGoogle Scholar
  87. Oriolo S, Oyhantçabal P, Wemmer K, Heidelbach F, Pfänder J, Basei MAS, Hueck M, Hannich F, Sperner B, Siegesmund S (2016a) Shear zone evolution and timing of deformation in the Neoproterozoic transpressional Dom Feliciano Belt, Uruguay. J Struct Geol 92:59–78CrossRefGoogle Scholar
  88. Oriolo S, Oyhantçabal P, Wemmer K, Basei MAS, Benowitz J, Pfänder J, Hannich F, Siegesmund S (2016b) Timing of deformation in the Sarandí del Yí Shear Zone, Uruguay: implications for the amalgamation of western Gondwana during the Neoproterozoic Brasiliano–Pan-African Orogeny. Tectonics.  https://doi.org/10.1002/2015TC004052 CrossRefGoogle Scholar
  89. Oriolo S, Oyhantçabal P, Basei MAS, Wemmer K, Siegesmund S (2016c) The Nico Pérez Terrane (Uruguay): from Archean crustal growth and connections with the Congo Craton to late Neoproterozoic accretion to the Río de la Plata Craton. Precambr Res 280:147–160CrossRefGoogle Scholar
  90. Oriolo S, Oyhantçabal P, Wemmer K, Siegesmund S (2017) Contemporaneous assembly of Western Gondwana and final Rodinia break-up: implications for the supercontinent cycle. Geosci Front 8(6):1431–1445CrossRefGoogle Scholar
  91. Oriolo S, Wemmer K, Oyhantçabal P, Fossen H, Schulz B, Siegesmund S (2018a) Geochronology of shear zones—a review. Earth Sci Rev 185:665–683CrossRefGoogle Scholar
  92. Oriolo S, Hueck M, Oyhantçabal P, Goscombe B, Wemmer K, Siegesmund S (2018b) Shear Zones in Brasiliano–Pan-African Belts and their role in the Amalgamation and break-up of Southwest Gondwana. In: Siegesmund S, Oyhantçabal P, Basei MAS, Oriolo S (eds) Geology of Southwest Gondwana. Regional geology reviews. Springer, Heidelberg, pp 593–613CrossRefGoogle Scholar
  93. Oyhantçabal P, Siegesmund S, Wemmer K, Robert F, Lyer P (2007) Post-collisional transition from calc-alkaline to alkaline magmatism during transcurrent deformation in the southernmost Dom Feliciano Belt (Braziliano–Pan-African, Uruguay). Lithos 98:141–159CrossRefGoogle Scholar
  94. Oyhantçabal P, Siegesmund S, Wemmer K, Presnyakov S, Layer P (2009) Geochronological constraints on the evolution of the southern Dom Feliciano Belt (Uruguay). J Geol Soc Lond 166:1075–1084CrossRefGoogle Scholar
  95. Oyhantçabal P, Siegesmund S, Wemmer K, Layer P (2010) The Sierra Ballena Shear Zone in the southernmost Dom Feliciano Belt (Uruguay): evolution, kinematics, and deformation conditions. Int J Earth Sci.  https://doi.org/10.1007/s00531-009-0453-1 CrossRefGoogle Scholar
  96. Oyhantçabal P, Siegesmund S, Wemmer K, Passchier CW (2011) The transpressional connection between Dom Feliciano and Kaoko Belts at 580–550 Ma. Int J Earth Sci 100:379–390CrossRefGoogle Scholar
  97. Passarelli CR, Basei MAS (1995) Análise dos petrotramas de eixos-c de quartzo: zona de cisalhamento Major Gercino (SC). Boletim do Instituto de Geociências da universidade de São Paulo, Série Científica, vol. 26, pp 99–113CrossRefGoogle Scholar
  98. Passarelli CR, Basei MAS, Campos Neto MC (1993) Caracterização geométrica e cinemática da Zona de Cisalhamento Major Gercino e sua importância na compartimentação dos terrenos Pré-Cambrianos de Santa Catarina. Rev Bras Geociê 23:234–241CrossRefGoogle Scholar
  99. Passarelli CR, Basei MAS, Siga O Jr, Mc Reath I, Campos Neto MC (2010) Deformation and geochronology of syntectonic granitoids emplaced in the major Gercino Shear zone, southeastern south America. Gondwana Res 17:688–703CrossRefGoogle Scholar
  100. Passarelli CR, Basei MAS, Wemmer K, Siga O Jr, Oyhantçabal P (2011a) Major Shear Zones of southern Brazil and Uruguay: escape tectonics in the eastern border of Rio de La Plata and Paranapanema cratons during the Western Gondwana amalgamation. Int J Earth Sci 100:391–414CrossRefGoogle Scholar
  101. Passarelli CR, McReath I, Basei MAS, Siga O Jr, Campos Neto MC (2011b) Heterogeneity in syntectonic granitoids emplaced in a major shear zone, southern Brazil. J South Am Earth Sci 32:369–378CrossRefGoogle Scholar
  102. Passarelli CR, Basei MAS, Siga O Jr, Harara MM (2018) The Luis Alves and Curitiba Terranes: continental fragments in the Adamastor Ocean. In: Siegesmund S, Oyhantçabal P, Basei MAS, Oriolo S (eds) Geology of Southwest Gondwana. Regional geology reviews. Springer, Heidelberg, pp 161–188Google Scholar
  103. Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, BerlinGoogle Scholar
  104. Passchier CW, Trouw RAJ, Ribeiro A, Paciullo FVP (2002) Tectonic evolution of the southern Kaoko belt, Namibia. J Afr Earth Sci 35(1):61–75CrossRefGoogle Scholar
  105. Paterson SR, Fowler TK Jr, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82CrossRefGoogle Scholar
  106. Peternel M, Bitencourt MF, Kruhl JH, Stäb C (2010) Macro and microstructures as indicators of the development of syntectonic granitoids and host rocks in the Camboriú region, Santa Catarina, Brazil. J South Am Earth Sci 29:738–750CrossRefGoogle Scholar
  107. Philipp RP, Machado R (2005) The Neoproterozoic to Cambrian granitic magmatism of the Pelotas Batholith, southern Brazil. J South Am Earth Sci 19:461–478CrossRefGoogle Scholar
  108. Philipp RP, Mesquita MJM, Gomes MEB, Almeida DPM (1993) Reconhecimento estrutural e geoquímico dos granitóides brasilianos da região de Pelotas-RS. Pesquisas Geociê 20(1):3–13Google Scholar
  109. Philipp RP, Machado R, Nardi LVS, Lafon JM (2002) O magmatismo granítico Neoproterozóico do Batólito Pelotas no sul do Brasil: novos dados e revisão de geocronologia regional. Rev Bras Geoci 32(2):277–290CrossRefGoogle Scholar
  110. Philipp RP, Machado R, Chemale F Jr (2003) Reavaliação e novos dados geocronológicos (Ar/Ar, Rb/Sr e Sm/Nd) do Batólito Pelotas no Rio Grande do Sul: implicações petrogenéticas e idade de reativação das zonas de cisalhamento. Geologia USP, Série Científica 3:71–84CrossRefGoogle Scholar
  111. Philipp RP, Mallmann G, Bitencourt MF, Souza ER, Souza MMA, Liz JD, Wild F, Arendt S, Oliveira A, Duarte L, Rivera CB, Prado M (2004) Caracterização litológica e evolução metamórfica da porção leste do Complexo Metamórfico Brusque, Santa Catarina. Rev Bras Geociê 34:21–34CrossRefGoogle Scholar
  112. Philipp RP, Massonne HJ, Campos RS (2013) Peraluminous leucogranites of the Cordilheira Suite: a record of Neoproterozoic collision and the generation of the Pelotas Batholith, Dom Feliciano Belt, Southern Brazil. J South Am Earth Sci 43:8–24CrossRefGoogle Scholar
  113. Philipp RP, Pimentel MM, Chemale F Jr (2016) Tectonic evolution of the Dom Feliciano Belt in Southern Brazil: geological relationships and U–Pb geochronology. Braz J Geol 46(1):83–104CrossRefGoogle Scholar
  114. Porada H (1989) Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil. Precambr Res 44:103–136CrossRefGoogle Scholar
  115. Preciozzi F, Masquelin H, Basei MAS (1999) The namaqua/grenville terrane of eastern Uruguay. In: II South American Symposium on Isotope Geology, Argentina. Short Papers, pp 338–340Google Scholar
  116. Pryer LL (1993) Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario, Canada. J Struct Geol 15(1):21–36CrossRefGoogle Scholar
  117. Purdy JW, Jäger E (1976) K-Ar ages on rock-forming minerals from the Central Alps. Memorie degli Istituti di Geologia e Mineralogia dell’Università di Padova 30:1–31Google Scholar
  118. Raposo MI, Drukas CO, Basei MAS (2014) Deformation in rocks from Itajaí basin, Southern Brazil, revealed by magnetic fabrics. Tectonophysics 629:290–302CrossRefGoogle Scholar
  119. Rocha Campos AC, Basei MAS, Nutman AP, dos Santos PR (2007) SHRIMP U–Pb zircon geochronological calibration of the late Paleozoic supersequence, Paraná Basin, Brazil. In: 4° Simpósio Sobre Cronoestratigrafia da Bacia do Paraná, Armação de Búzios. Abstracts, p 33Google Scholar
  120. Rostirolla SP, Alckmin FF, Soares PC (1992) O Grupo Itajaí, Estado de Santa Catarina, Brasil, exemplo de sedimentação em uma bacia flexural de antepaís. Boletim Geociê Petrobrás 6(3/4):109–122Google Scholar
  121. Rostirolla SP, Ahrendt A, Soares PC, Carmingnani L (1999) Basin analysis and mineral endowment of the Proterozoic Itajaí Basin, south-east Brazil. Basin Res 11:127–142CrossRefGoogle Scholar
  122. Rostirolla SP, Assine ML, Fernandes LA, Artur PC (2000) Reativação de paleolineamentos durante a evolução da Bacia do Paraná-o exemplo do alto estrutural de Quatiguá. Rev Bras Geociê 30(4):639–648CrossRefGoogle Scholar
  123. Saalmann K, Hartmann LA, Remus MVD (2007) The assembly of West Gondwana—the view from the Rio de la Plata craton. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geological Society of America Special Paper 423, pp 1–26Google Scholar
  124. Saalmann K, Gerdes A, Lahaye Y, Hartmann LA, Remus MVD, Läufer A (2011) Multiple accretion at the eastern margin of the Rio de la Plata craton: the prolonged Brasiliano orogeny in southernmost Brazil. Int J Earth Sci 100:355–378CrossRefGoogle Scholar
  125. Schmid SM, Casey M (1986) Complete fabric analysis of some commonly observed quartz c-axis patterns. Geophys Monogr Ser 36:263–286Google Scholar
  126. Schumacher E (1975) Herstellung von 99.9997% 38Ar für die 40K/40Ar Geochronologie. Geochronol Chim 24:441–442Google Scholar
  127. Silva LC (1991) O cinturão metavulcanossedimentar Brusque e a evoluç ão policíclica das faixas dobradas proterozóicas no sul do Brasil: uma revisão. Rev Bras Geociê 21:60–73CrossRefGoogle Scholar
  128. Silva LC, Hartmann LA, McNaughton NJ, Fletcher IR (1997) SHRIMP U/Pb zircon dating of Neoproterozoic granitic magmatism and collision in the Pelotas batholith, southernmost Brazil. Int Geol Rev 41:531–551CrossRefGoogle Scholar
  129. Silva LC, Hartmann LA, McNaughton NJ, Fletcher I (2000) Zircon U–Pb SHRIMP dating of a Neoproterozoic overprint in Paleoproterozoic granitic–gneissic terranes, southern Brazil. Am Miner 85:649–667CrossRefGoogle Scholar
  130. Silva LC, Armstrong R, Pimentel MM, Scandolara J, Ramgrab G, Wildner W, Angelim LAA, Vasconcelos AM, Rizzoto G, Quadros MLES, Sander A, Rosa ALZ (2002a) Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U–Pb SHRIMP, Parte III: Províncias Borborema, Mantiqueira Meridional e Rio Negro-Juruena. Rev Bras Geociê 32(4):529–544CrossRefGoogle Scholar
  131. Silva LC, McNaughton NJ, Santos JOS (2002b) Datações U–Pb SHRIMP do vulcanismo félsico na Bacia Brusque, Orógeno Pelotas, SC. In: Congresso Brasileiro de Geologia 41, João Pessoa, Brasil. Anais, p 510Google Scholar
  132. Silva LC, McNaughton NJ, Hartmann LA, Fletcher IR (2003) Contrasting zircon growth patterns in Neoproterozoic granites of Southern Brazil revealed by SHRIMP U–Pb analyses and SEM imaging: consequences for the discrimination of emplacement and inheritance ages. In: IV South American Symposium on Isotope Geology, Salvador, Bahia, Brazil. Short Papers, pp 687–690Google Scholar
  133. Silva LC, McNaughton NJ, Armstrong R, Hartman LA, Fletcher IR (2005a) The neoproterozoic Mantiqueira Province and its African connections: a zircon-based U–Pb geochronologic subdivision for the Brasiliano/Pan-African systems of orogens. Precambr Res 136:203–240CrossRefGoogle Scholar
  134. Silva LC, McNaughton NJ, Fletcher IR (2005b) Reassessment on complex zircon populations from Neoproterozoic granites in Brazil, through SEM imaging and SHRIMP analysis: consequences for discrimination of emplacement and inherited ages. Lithos 82(3–4):503–525CrossRefGoogle Scholar
  135. Środoń J, Eberl DD (1984) Illite. Rev Miner Geochem 13(1):495–544Google Scholar
  136. Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 C. J Struct Geol 24(12):1861–1884CrossRefGoogle Scholar
  137. Streepey MM, Johnson EL, Mezger K, Van Der Pluijm BA (2001) Early history of the Carthage-Colton shear zone, Grenville Province, Northwest Adirondacks, New York (USA). J Geol 109(4):479–492CrossRefGoogle Scholar
  138. Süssenberger A, Wemmer K, Schmidt ST (2018) The zone of incipient 40Ar* loss-monitoring 40Ar* degassing behavior in a contact metamorphic setting. Appl Clay Sci 165:52–63CrossRefGoogle Scholar
  139. Tagami T (2012) Thermochronological investigation of fault zones. Tectonophysics 538–540:67–85CrossRefGoogle Scholar
  140. Tommasi A, Vauchez A, Fernandes LAD, Porcher CC (1994) Orogen-parallel strike-slip faulting and synkinematic magmatism in the Dom Feliciano Belt, Southern Brazil. Tectonics 13:421–437CrossRefGoogle Scholar
  141. Torgersen E, Viola G, Zwingmann H, Henderson IHC (2015) Inclined K-Ar illite age spectra in brittle fault gouges: effects of fault reactivation and wall-rock contamination. Terra Nova 27(2):106–113CrossRefGoogle Scholar
  142. van der Pluijm BA, Mezger K, Cosca MA, Essene EJ (1994) Determining the significance of high-grade shear zones by using temperature-time paths, with examples from the Grenville orogen. Geology 22(8):743–746CrossRefGoogle Scholar
  143. Vauchez A, Pacheco Neves S, Tommasi A (1997) Transcurrent shear zones and magma emplacement in Neoproterozoic belts if Brazil. In: Bouchez JL, Hutton D, Stephens WE (eds) Granite: from segregation of melt to the emplacement fabrics. Kluwer, Dordrecht, pp 275–293CrossRefGoogle Scholar
  144. Vlach SRF, Basei MAS, Castro NA (2009) Idade U–Th–Pb de monazita por microssonda eletrônica do Granito Nova Trento, Grupo Brusque, SC. In: Simpósio 45 anos de Geocronologia no Brasil. São Paulo, Brasil. Annals, pp 325–327Google Scholar
  145. Wemmer K (1991) K/Ar-Altersdatierungsmöglichkeiten für retrograde Deformationsprozesse im spröden und duktilen Bereich—Beispiele aus der KTB Vorbohrung (Oberpfalz) und dem Bereich der Insubrichen Linie (N-Italien). Göttinger Arbeiten zur Geologie Paläontologie 51:1–61Google Scholar
  146. Wemmer K, Ahrendt H (1997) Comparative K-Ar and Rb-Sr age determinations of retrograde processes on rocks from the KTB deep drilling project. Geol Rundsch 86:S272CrossRefGoogle Scholar
  147. Wemmer K, Steenken A, Müller S, López de Luchi MG, Siegesmund S (2011) The tectonic significance of K/Ar illite fine-fraction ages from the San Luis Formation (Eastern Sierras Pampeanas, Argentina). Int J Earth Sci 100(2–3):659–669CrossRefGoogle Scholar
  148. Zalán PV, Wolff S, Astolfi MAM, Vieira IS, Conceição JCJ, Appi VT, Santos Neto EV, Cerqueira JR, Marques A (1990) The Paraná Basin, Brazil. In: Leighton MW, Kolata DR, Oltz DF, Eidel JJ (eds) Interior cratonic basins. American Association of Petroleum Geologists Memoir, vol 51, pp 681–708Google Scholar
  149. Zanini LFP, Branco PDM, Camozzato E, Ramgrab GE (1997) Programa levantamentos geológicos básicos do Brasil. Florianópolis-Lagoa: folha SG. 22-ZDV-folha SG. 22-ZD-VI. 1:100,000. CPRM Porto AlegreGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Geoscience CentreGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Instituto de GeociênciasUniversidade de São PauloSão PauloBrazil
  3. 3.Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA)CONICET-Universidad de Buenos AiresBuenos AiresArgentina
  4. 4.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany

Personalised recommendations