Advertisement

Structural, lithological, and geodynamic controls on geothermal activity in the Menderes geothermal Province (Western Anatolia, Turkey)

  • Vincent Roche
  • Vincent Bouchot
  • Laurent Beccaletto
  • Laurent Jolivet
  • Laurent Guillou-Frottier
  • Johann Tuduri
  • Erdin Bozkurt
  • Kerem Oguz
  • Bülent Tokay
Original Paper
  • 168 Downloads

Abstract

Western Turkey belongs to the regions with the highest geothermal potential in the world, resulting in significant electricity production from geothermal resources located predominantly in the Menderes Massif. Although geothermal exploitation is increasingly ongoing, geological, and physical processes leading to the emplacement of geothermal reservoirs are hitherto poorly understood. Several studies on the Menderes Massif led to different interpretations of structural controls on the location of hot springs and of the heat source origin. This paper describes geological evidence showing how heat is transmitted from the abnormally hot mantle to the geothermal reservoirs. On the basis of field studies, we suggest that crustal-scale low-angle normal faults convey hot fluids to the surface and represent the first-order control on geothermal systems. At the basin scale, connected on low-angle normal faults, kilometric high-angle transfer faults are characterized by dilational jogs, where fluids may be strongly focused. In addition, favourable lithologies in the basement (e.g., karstic marble) could play a critical role in the localization of geothermal reservoirs. Finally, a compilation of geochemical data at the scale of the Menderes Massif suggests an important role of the large mantle thermal anomaly, which is related to the Hellenic subduction. Heat from shallow asthenospheric mantle is suggested to be conveyed toward the surface by fluid circulation through the low-angle faults. Hence, geothermal activity in the Menderes Massif is not of magmatic origin but rather associated with active extensional tectonics related to the Aegean slab dynamics (i.e., slab retreat and tearing).

Keywords

Menderes Massif Structural control Detachment Transfer fault Hot mantle anomaly Slab dynamics 

Notes

Acknowledgements

This work has received funding from the Labex Voltaire (ANR-10-LABX-100-01) homed at Orléans University and BRGM, the French geological survey. The paper benefited from relevant revisions by Inga Moeck, Klaus Gessner and Gürol Seyitoğlu. We also thank the Editor in chief, Wolf-Christian Dullo.

Supplementary material

531_2018_1655_MOESM1_ESM.docx (45 kb)
Supplementary material 1 (DOCX 44 KB)

References

  1. Akin S, Yildirim N, Yazman M, Karadag M, Seçkin C, Tonguç E, Gürel E, Yarim H (2015) Coiled tubing acid stimulation of alaşehir geothermal field, Turkey. In: Proceedings world geothermal congress 2015, Melbourne, Australia, 19–25 April 2015Google Scholar
  2. Akkus I, Akıllı H, Ceyhan S, Dilemre A, Tekin Z (2005) Türkiye jeotermal kaynakları envanteri. MTA Genel Müdürlügü Yayınları, Envanter Serisi, 201Google Scholar
  3. Alçiçek H, Bülbül A, Brogi A, Liotta D, Ruggieri G, Capezzuoli E et al (2018) Origin, evolution and geothermometry of the thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey). J Volcanol Geoth Res 349:1–30CrossRefGoogle Scholar
  4. Altinoğlu FF, Sari M, Aydin A (2015) Detection of lineaments in denizli basin of western Anatolia region using bouguer gravity data. Pure Appl Geophys 172:415–425CrossRefGoogle Scholar
  5. Andritsos N, Dalambakis P, Arvanitis A, Papachristou M, Fytikas M (2015) Geothermal developments in Greece–Country update 2010–2014. In: Proceedings world geothermal congress 2015, pp 19–24Google Scholar
  6. Asti R (2016) A source-to-sink history of the supradetachment gediz graben (W Turkey): from exhumation of the central Menderes Massif through the Gediz detachment fault to sedimentation in the basin, ArcAdiAGoogle Scholar
  7. Aydın İ, Karat H, Koçak A (2005) Curie-point depth map of Turkey. Geophys J Int 162(2):633–640CrossRefGoogle Scholar
  8. Baba A, Bundschuh J, Chandrasekharam D (eds) (2014) Geothermal systems and energy resources: Turkey and Greece. CRC, Boca RatonGoogle Scholar
  9. Baba A, Şimşek C, Gündüz O, Elçi A, Murathan A (2015) Hydrogeochemical properties of geothermal fluid and its effect on the environment in Gediz Graben, Western Turkey. In: Proceedings world geothermal congress 2015, Melbourne, Australia, 19–25 April 2015Google Scholar
  10. Bayrak M, Serpen Ü, İlkışık OM (2011) Two-dimensional resistivity imaging in the Kızıldere geothermal field by MT and DC methods. J Volcanol Geotherm Res 204:1–11CrossRefGoogle Scholar
  11. Bayram AF, Simsek S (2005) Hydrogeochemical and isotopic survey of Kütahya-Simav geothermal field. In: Proceedings of world geothermal congress, Antalya, Turkey, pp 24–29Google Scholar
  12. Bennett RA, Wernicke BP, Niemi NA, Friedrich AM, Davis JL (2003) Contemporary strain rates in the northern Basin and Range province from GPS data. Tectonics.  https://doi.org/10.1029/2001TC001355 CrossRefGoogle Scholar
  13. Benoit D (1999) Conceptual models of the Dixie Valley, Nevada geothermal field. Trans Geotherm Resour Counc 1999:505–512Google Scholar
  14. Bertani R (2016) Geothermal power generation in the world 2010–2014 update report. Geothermics 60:31–43CrossRefGoogle Scholar
  15. Bilim F, Akay T, Aydemir A, Kosaroglu S (2016) Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics 60:44–57CrossRefGoogle Scholar
  16. Biryol CB, Beck SL, Zandt G, Özacar AA (2011) Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys J Int 184:1037–1057CrossRefGoogle Scholar
  17. Blackwell DD, Golan B, Benoit D (2000) Thermal regime in the Dixie Valley geothermal system. Geotherm Resour Council Trans 24:223–228Google Scholar
  18. Bonneau M, Kienast JR (1982) Subduction, collision et schistes bleus: exemple de l’Egée. Grèce Bull Soc Géol France 7:785–791CrossRefGoogle Scholar
  19. Bozkurt E (2001) Late Alpine evolution of the central Menderes Massif, western Turkey. Int J Earth Sci 89:728–744.  https://doi.org/10.1007/s005310000141 CrossRefGoogle Scholar
  20. Bozkurt E, Oberhänsli R (2001) Menderes Massif (Western Turkey): structural, metamorphic and magmatic evolution—a synthesis. Int J Earth Sci 89:679–708CrossRefGoogle Scholar
  21. Bozkurt E, Sözbilir H (2004) Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey. Geol Mag 141:63–79CrossRefGoogle Scholar
  22. Bozkurt E, Satır M, Buğdaycıoğlu Ç (2011) Surprisingly young Rb/Sr ages from the Simav extensional detachment fault zone, northern Menderes Massif, Turkey. J Geodyn 52:406–431CrossRefGoogle Scholar
  23. Buck WR (1988) Flexural rotation of normal faults. Tectonics 7(5):959–973CrossRefGoogle Scholar
  24. Bülbül A, Özen T, Tarcan G (2011) Hydrogeochemical and hydrogeological investigations of thermal waters in the Alasehir-Kavaklidere area (Manisa-Turkey). Afr J Biotechnol 10:17223–17240Google Scholar
  25. Bunbury JM, Hall L, Anderson GJ, Stannard A (2001) The determination of fault movement history from the interaction of local drainage with volcanic episodes. Geol Mag 138(2):185–192CrossRefGoogle Scholar
  26. Buscher JT, Hampel A, Hetzel R, Dunkl I, Glotzbach C, Struffert A et al (2013) Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. J Geol Soc 170(4):669–683CrossRefGoogle Scholar
  27. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028CrossRefGoogle Scholar
  28. Çifçi G, Pamukçu O, Çoruh C, Çopur S, Sözbilir H (2011) Shallow and deep structure of a supradetachment basin based on geological, conventional deep seismic reflection sections and gravity data in the Buyuk Menderes Graben, western Anatolia. Surv Geophys 32(3):271–290CrossRefGoogle Scholar
  29. Çiftçi NB, Bozkurt E (2009) Pattern of normal faulting in the Gediz Graben, SW Turkey. Tectonophysics 473(1–2):234–260CrossRefGoogle Scholar
  30. Çiftçi NB, Bozkurt E (2010) Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the graben basin. Basin Res 22:846–873Google Scholar
  31. Collins AS, Robertson AHF (1998) Processes of Late Cretaceous to Late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. J Geol Soc 15:759–772Google Scholar
  32. De Boorder H, Spakman W, White SH, Wortel MJR (1998) Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth Planet Sci Lett 164(3):569–575CrossRefGoogle Scholar
  33. Delvaux D, Sperner B (2003) New aspects of tectonic stress inversion with reference to the TENSOR program. Geol Soc Lond Spec Publ 212(1):75–100CrossRefGoogle Scholar
  34. Demircioğlu D, Ecevitoğlu B, Seyitoğlu G (2010) Evidence of a rolling hinge mechanism in the seismic records of the hydrocarbon-bearing Alaşehir graben, western Turkey. Pet Geosci 16(2):155–160CrossRefGoogle Scholar
  35. Dercourt J, Zonenshain LP, Ricou LE, Kuzmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet JC, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophysics 123:241–315CrossRefGoogle Scholar
  36. Dilek Y, Altunkaynak Ş (2009) Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt. Geol Soc Lond Spec Publ 311:213–233CrossRefGoogle Scholar
  37. Dolmaz MN, Ustaömer T, Hisarli ZM, Orbay N (2005) Curie point depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth Planets Sp 57(5):373–383CrossRefGoogle Scholar
  38. Dora O, Kun N, Candan O (1990) Metamorphic history and geotectonic evoultion of the Menderes Massif. IESCA Proc2:102–115Google Scholar
  39. Drahor MG, Berge MA (2006) Geophysical investigations of the Seferihisar geothermal area, Western Anatolia. Turk Geotherm 35:302–320CrossRefGoogle Scholar
  40. Emre T (1992) Gediz grabeni’nin (Salihli-Alaflehir arasi) jeolojisi. 45. Turkiye Jeoloji Kurultayi Bildiri Ozleri, s.60Google Scholar
  41. Emre T, Sözbilir H (1997) Field evidence for metamorphic core complex, detachment faulting and accommodation faults in the Gediz and Büyük Menderes grabens, western Anatolia. In: International earth sciences colloquium on the Aegean Region, Izmir-Güllük, Turkey. pp 73–93Google Scholar
  42. Endrun B, Lebedev S, Meier T, Tirel C, Friederich W (2011) Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. Nat Geosci 4(3):203CrossRefGoogle Scholar
  43. Epstein S, Sharp RP, Gow AJ (1965) Six-year record of oxygen and hydrogen isotope variations in South Pole firn. J Geophys Res 70(8):1809–1814CrossRefGoogle Scholar
  44. Erdoğan B (1990) İzmir-Ankara Zonu’nun, İzmir ile Seferihisar arasındaki bölgede stratigrafik özellikleri ve tektonik evrimi. TPJD Bül 2:1–20Google Scholar
  45. Erkan K (2014) Crustal heat flow measurements in western Anatolia from borehole equilibrium temperatures. Solid Earth Discuss 6:403–426CrossRefGoogle Scholar
  46. Erkan K (2015) Geothermal investigations in western Anatolia using equilibrium temperatures from shallow boreholes. Solid Earth 6(1):103CrossRefGoogle Scholar
  47. Ersoy EY, Helvacı C, Palmer MR (2010) Mantle source characteristics and melting models for the earlymiddle Miocene mafic volcanism in Western Anatolia: implications for enrichment processes of mantle lithosphere and origin of K-rich volcanism in postcollisional settings. J Volcanol Geotherm Res 198:112–128CrossRefGoogle Scholar
  48. Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F (2004) Lateral slab deformation and the origin of the Western Mediterranean arcs. Tectonics.  https://doi.org/10.1029/2002TC001488 CrossRefGoogle Scholar
  49. Faccenna C, Bellier O, Martinod J, Piromallo C, Regard V (2006) Slab detachment beneath eastern Anatolia: a possible cause for the formation of the North Anatolian fault. Earth Planet Sci Lett 242(1–2):85–97CrossRefGoogle Scholar
  50. Famin V, Philippot P, Jolivet L, Agard P (2004) Evolution of hydrothermal regime along a crustal shear zone, Tinos Island, Greece. Tectonics 23:5CrossRefGoogle Scholar
  51. Famin V, Hébert R, Philippot P, Jolivet L (2005) Ion probe and fluid inclusion evidences for co-seismic fluid infiltration in a crustal detachment. Contrib Mineral Petrol 150(3):354–367.  https://doi.org/10.1007/s00410-005-0031-x CrossRefGoogle Scholar
  52. Faulds JE, Coolbaugh M, Blewitt G, Henry CD (2004) Why is Nevada in hot water? Structural controls and tectonic model of geothermal systems in the northwestern Great Basin. Geotherm Resour Council Trans 28:649–654Google Scholar
  53. Faulds J, Coolbaugh M, Bouchot V, Moek I, Oguz K (2010) Characterizing structural controls of geothermal reservoirs in the Great Basin, USA, and Western Turkey: developing successful exploration strategies in extended terranes. In: Presented at the world geothermal congress 2010, p 11Google Scholar
  54. Faulds JE, Hinz NH, Coolbaugh MF, Cashman PH, Kratt C, Dering G et al (2011) Assessment of favorable structural settings of geothermal systems in the Great Basin, western USA. Geotherm Resour Counc Trans 35:777–783Google Scholar
  55. Faulds JE, Hinz N, Kreemer C, Coolbaugh M (2012) Regional patterns of geothermal activity in the Great Basin Region, Western USA: correlation with strain rates. Geotherm Resour Counc Trans 36:897–902Google Scholar
  56. Filiz S, Tarcan G, Gemici U (2000) Geochemistry of the Germencik geothermal fields, Turkey. In: Proceedings of the world geothermal congress, pp 1115–1120Google Scholar
  57. Gemici Ü, Tarcan G (2002) Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey. J Volcanol Geoth Res 116(3–4):215–233CrossRefGoogle Scholar
  58. Genç C, Altunkaynak Ş, Karacık Z, Yazman M, Yılmaz Y (2001) The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodin Acta 14(1–3):45–55Google Scholar
  59. Gessner K, Piazolo S, Güngör T, Ring U, Kröner A, Passchier CW (2001a) Tectonic significance of deformation patterns in granitoid rocks of the Menderes nappes, Anatolide belt, southwest Turkey. Int J Earth Sci 89:766–780CrossRefGoogle Scholar
  60. Gessner K, Ring U, Johnson C, Hetzel R, Passchier CW, Güngör T (2001b) An active bivergent rolling-hinge detachment system: central Menderes metamorphic core complex in western Turkey. Geology 29:611–614CrossRefGoogle Scholar
  61. Gessner K, Gallardo LA, Markwitz V, Ring U, Thomson SN (2013) What caused the denudation of the Menderes Massif: review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Res 24(1):243–274CrossRefGoogle Scholar
  62. Gessner K, Markwitz V, Güngör T (2017) Crustal fluid flow in hot continental extension: tectonic framework of geothermal areas and mineral deposits in western Anatolia. Geol Soc Lond Spec Publ 453:SP453–S7Google Scholar
  63. Gottardi R, Teyssier C, Mulch A, Vennemann TW, Wells ML (2011) Preservation of an extreme transient geotherm in the Raft River detachment shear zone. Geology 39(8):759–762CrossRefGoogle Scholar
  64. Govers R, Fichtner A (2016) Signature of slab fragmentation beneath Anatolia from full-waveform tomography. Earth Planet Sci Lett 450:10–19.  https://doi.org/10.1016/j.epsl.2016.06.014 CrossRefGoogle Scholar
  65. Govers R, Wortel MJR (2005) Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet Sci Lett 236:505–523CrossRefGoogle Scholar
  66. Güleç N (1988) Helium-3 distribution in western Turkey. Miner Res Expl Bull 108:35–42Google Scholar
  67. Güleç N, Hilton DR (2006) Helium and heat distribution in western Anatolia, Turkey: relationship to active extension and volcanism. Geol Soc Am Spec Pap 409:305–319Google Scholar
  68. Güleç N, Hilton DR, Mutlu H (2002) Helium isotope variations in Turkey: relationship to tectonics, volcanism and recent seismic activities. Chem Geol 187:129–142CrossRefGoogle Scholar
  69. Güngör T, Erdoğan B (2002) Tectonic significance of mafic volcanic rocks in a Mesozoic sequence of the Menderes Massif, West Turkey. Int J Earth Sci 91(3):386–397CrossRefGoogle Scholar
  70. Haizlip JR, Haklidir FT, Garg SK (2013) Comparison of reservoir conditions in high noncondensible gas geothermal systems. In: Proceedings, 38th workshop on geothermal reservoir engineering, pp 11–13Google Scholar
  71. Haklidir FT, Sengun R, Haizlip JR (2015) The geochemistry of the deep reservoir wells in Kizildere (Denizli City) geothermal field (Turkey). Geochemistry 19:25Google Scholar
  72. Hetzel R, Passchier CW, Ring U, Dora ÖO (1995a) Bivergent extension in orogenic belts: the Menderes Massif (southwestern Turkey). Geology 23:455–458CrossRefGoogle Scholar
  73. Hetzel R, Ring U, Akal C, Troesch M (1995b) Miocene NNE-directed extensional unroofing in the Menderes Massif, southwestern Turkey. J Geol Soc 152:639–654CrossRefGoogle Scholar
  74. Hetzel R, Zwingmann H, Mulch A, Gessner K, Akal C, Hampel A, Güngör T, Petschick R, Mikes T, Wedin F (2013) Spatiotemporal evolution of brittle normal faulting and fluid infiltration in detachment fault systems: a case study from the Menderes Massif, western Turkey. Tectonics 32:364–376CrossRefGoogle Scholar
  75. Isik V, Tekeli O, Cemen I (1997) Mylonitic fabric development along a detachment surface in northern Menderes massif, western Anatolia, Turkey. In: Geol. Soc. America, abstracts with programsGoogle Scholar
  76. Isik V, Tekeli O, Seyitoglu G (2004) The 40Ar/39Ar age of extensional ductile deformation and granitoid intrusion in the northern Menderes core complex: implications for the initiation of extensional tectonics in western Turkey. J Asian Earth Sci 23(4):555–566CrossRefGoogle Scholar
  77. Işik V, Tekeli O (2001) Late orogenic crustal extension in the northern Menderes Massif (western Turkey): evidence for metamorphic core complex formation. Int J Earth Sci 89:757–765CrossRefGoogle Scholar
  78. Işık V, Seyitoğlu G, Cemen I (2003) Ductile–brittle transition along the Alaşehir detachment fault and its structural relationship with the Simav detachment fault, Menderes Massif, western Turkey. Tectonophysics 374:1–18CrossRefGoogle Scholar
  79. Jolie E, Klinkmueller M, Moeck I, Bruhn D (2016) Linking gas fluxes at Earth’s surface with fracture zones in an active geothermal field. Geology, G37412-1Google Scholar
  80. Jolivet L, Brun JP (2010) Cenozoic geodynamic evolution of the Aegean. Int J Earth Sci Geol Rundsch 99(6):109–138.  https://doi.org/10.1007/s00531-008-0366-4 CrossRefGoogle Scholar
  81. Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa–Eurasia collision. Tectonics 19:1095–1106.  https://doi.org/10.1029/2000TC900018 CrossRefGoogle Scholar
  82. Jolivet L, Goffé B, Monié P, Truffert-Luxey C, Patriat M, Bonneau M (1996) Miocene detachment in Crete and exhumation P-T-t paths of high-pressure metamorphic rocks. Tectonics 15:1129–1153CrossRefGoogle Scholar
  83. Jolivet L, Faccenna C, Huet B, Labrousse L, Le Pourhiet L, Lacombe O et al (2013) Aegean tectonics: strain localisation, slab tearing and trench retreat. Tectonophysics 597:1–33CrossRefGoogle Scholar
  84. Jolivet L, Menant A, Sternai P, Rabillard A, Arbaret L, Augier R, Laurent V, Beaudoin A, Grasemann B, Huet B, Labrousse L, Le Pourhiet L (2015) The geological signature of a slab tear below the Aegean. Tectonophysics 659:166–182.  https://doi.org/10.1016/j.tecto.2015.08.004 CrossRefGoogle Scholar
  85. Jongsma D (1974) Heat flow in the Aegean Sea. Geophys J Int 37(3):337–346CrossRefGoogle Scholar
  86. Karabulut H, Paul A, Afacan Ergün T, Hatzfeld D, Childs DM, Aktar M (2013) Long-wavelength undulations of the seismic Moho beneath the strongly stretched Western Anatolia. Geophys J Int 194:450–464.  https://doi.org/10.1093/gji/ggt1100 CrossRefGoogle Scholar
  87. Karakuş H (2015) Helium and carbon isotope composition of gas discharges in the Simav Geothermal Field, Turkey: implications for the heat source. Geothermics 57:213–223CrossRefGoogle Scholar
  88. Karamanderesi İH (1997) Salihli-Caferbey (Manisa Ili) jeotermal sahası potansiyelive gelecegi. Dunya Enerji Konseyi Turk Milli Komitesi, Turkiye 7. Enerji Kongresi teknik oturum bildiri metinleri, pp 247–261 (in Turkish) Google Scholar
  89. Karamanderesi İH (2013) Characteristics of geothermal reservoirs in Turkey. IGA Academy Report 0102-2013Google Scholar
  90. Karamanderesi İH, Helvaci C (2003) Geology and hydrothermal alteration of the AydıN–Salavatlı geothermal field, western Anatolia, Turkey. Turk J Earth Sci 12:175–198Google Scholar
  91. Kaya A (2015) The effects of extensional structures on the heat transport mechanism: an example from the Ortakçı geothermal field (Büyük Menderes Graben, SW Turkey). J Afr Earth Sci 108:74–88CrossRefGoogle Scholar
  92. Kaypak B, Gökkaya G (2012) 3-D imaging of the upper crust beneath the Denizli geothermal region by local earthquake tomography, western Turkey. J Volcanol Geoth Res 211:47–60CrossRefGoogle Scholar
  93. Kennedy BM, Van Soest MC (2007) Flow of mantle fluids through the ductile lower crust: helium isotope trends. Science 318(5855):1433–1436CrossRefGoogle Scholar
  94. Kennedy BM, Kharaka YK, Evans WC, Ellwood A, DePaolo DJ, Thordsen J et al (1997) Mantle fluids in the San Andreas fault system, California. Science 278(5341):1278–1281CrossRefGoogle Scholar
  95. Kent E, Boulton SJ, Stewart IS, Whittaker AC, Alçiçek MC (2016) Geomorphic and geological constraints on the active normal faulting of the Gediz (Alaşehir) Graben, Western Turkey. J Geol Soc 2016:jgs2015-121Google Scholar
  96. Kindap A, Kaya T, Haklıdır FST, Bükülmez AA (2010) Privatization of kizildere geothermal power plant and new approaches for field and plant. In: Proceedings world geothermal congressGoogle Scholar
  97. Koçyigit A, Yusufoglu H, Bozkurt E (1999) Discussion on evidence from the Gediz Graben for episodic two-stage extension in western Turkey. J Geol Soc Lond 156:1240–1242Google Scholar
  98. Koçyiğit A (2015) An overview on the main stratigraphic and structural features of a geothermal area: the case of Nazilli-Buharkent section of the Büyük Menderes Graben, SW Turkey. Geodin Acta 27(2–3):85–109CrossRefGoogle Scholar
  99. Kose R (2007) Geothermal energy potential for power generation in Turkey: a case study in Simav, Kutahya. Renew Sustain Energy Rev 11(3):497–511CrossRefGoogle Scholar
  100. Kulongoski JT, Hilton DR, Izbicki JA (2005) Source and movement of helium in the eastern Morongo groundwater Basin: the influence of regional tectonics on crustal and mantle helium fluxes. Geochimica et cosmochimica Acta 69(15):3857–3872CrossRefGoogle Scholar
  101. Lachenbruch AH, Saas JH (1992) Heat flow from Cajon Pass, fault strength, and tectonic implications. J Geophys Res 97:4995–5015CrossRefGoogle Scholar
  102. Larson LT, Erler YA (1993) The epithermal lithogeochemical signature—a persistent characterization of precious metal mineralization at Kursunlu and Örencik, two prospects of very different geology in western Turkey. J Geochem Explor 47(1–3):321–331CrossRefGoogle Scholar
  103. Leloup PH, Ricard Y, Battaglia J, Lacassin R (1999) Shear heating in continental strike-slip shear zones: model and field examples. Geophys J Int 136:19–40CrossRefGoogle Scholar
  104. Lips AL, Cassard D, Sözbilir H, Yilmaz H, Wijbrans JR (2001) Multistage exhumation of the Menderes massif, western Anatolia (Turkey). Int J Earth Sci 89(4):781–792CrossRefGoogle Scholar
  105. Maddy D, Veldkamp A, Demir T, van Gorp W, Wijbrans JR, van Hinsbergen DJJ et al (2017) The Gediz River fluvial archive: a benchmark for quaternary research in Western Anatolia. Quatern Sci Rev 166:289–306CrossRefGoogle Scholar
  106. Magri F, Akar T, Gemici U, Pekdeger A (2010) Deep geothermal groundwater flow in the Seferihisar–Balçova area, Turkey: results from transient numerical simulations of coupled fluid flow and heat transport processes. Geofluids 10:388–405CrossRefGoogle Scholar
  107. Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5:227–245.  https://doi.org/10.1029/TC005i002p00227 CrossRefGoogle Scholar
  108. Marty B, O’nions RK, Oxburgh ER, Martel D, Lombardi S (1992) Helium isotopes in Alpine regions. Tectonophysics 206(1):71–78CrossRefGoogle Scholar
  109. McCaig AM (1988) Deep fluid circulation in fault zones. Geology 16(10):867–870CrossRefGoogle Scholar
  110. Menant A, Jolivet L, Vrielynck B (2016) Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterranean region since the late Cretaceous. Tectonophysics 675:103–140CrossRefGoogle Scholar
  111. Menant A, Jolivet L, Tuduri J, Loiselet C, Bertrand G, Guillou-Frottier L (2018) 3D subduction dynamics: a first-order parameter of the transition from copper- to gold-rich deposits in the eastern Mediterranean region. Ore Geol Rev 94:118–135CrossRefGoogle Scholar
  112. Mendrinos D, Choropanitis I, Polyzou O, Karytsas C (2010) Exploring for geothermal resources in Greece. Geothermics 39:124–137CrossRefGoogle Scholar
  113. Moeck IS (2014) Catalog of geothermal play types based on geologic controls. Renew Sustain Energy Rev 37:867–882CrossRefGoogle Scholar
  114. Moeck IS, Schandelmeier H, Holl GH (2009) The stress regime in a Rotliegend reservoir of the Northeast German Basin. Int J Earth Sci 98(7):1643–1654CrossRefGoogle Scholar
  115. Mulch A, Teyssier C, Cosca MA, Chamberlain CP (2007) Stable isotope paleoaltimetry of Eocene core complexes in the North American Cordillera. Tectonics.  https://doi.org/10.1029/2006TC001995 CrossRefGoogle Scholar
  116. Mutlu H, Güleç N, Hilton DR (2008) Helium–carbon relationships in geothermal fluids of western Anatolia. Turk Chem Geol 247:305–321CrossRefGoogle Scholar
  117. O’nions RK, Oxburgh ER (1988) Helium, volatile fluxes and the development of continental crust. Earth Planet Sci Lett 90(3):331–347CrossRefGoogle Scholar
  118. Oliver NHS (1996) Review and classification of structural controls on fluid flow during regional metamorphism. J Metamorph Geol 14(4):477–492CrossRefGoogle Scholar
  119. Oner Z, Dilek Y (2011) Supradetachment basin evolution during continental extension: the Aegean province of western Anatolia, Turkey. Geol Soc Am Bull 123:2115–2141.  https://doi.org/10.1130/B30468.1 CrossRefGoogle Scholar
  120. Oner Z, Dilek Y (2013) Fault kinematics in supradetachment basin formation, Menderes core complex of western Turkey. Tectonophysics 608:1394–1412CrossRefGoogle Scholar
  121. Ozdemir A, Yasar E, Cevik G (2017) An importance of the geological investigations in Kavaklıdere geothermal field (Turkey). Geomech Geophys Geo Energy Geo Resour 3(1):29–49CrossRefGoogle Scholar
  122. Özen T, Bülbül A, Tarcan G (2012) Reservoir and hydrogeochemical characterizations of geothermal fields in Salihli. Turk J Asian Earth Sci 60:1–17CrossRefGoogle Scholar
  123. Özgür N (2002) Geochemical signature of the Kizildere geothermal field, western Anatolia, Turkey. Int Geol Rev 44:153–163CrossRefGoogle Scholar
  124. Özgür N, Karamenderesi IH (2015) An update of the geothermal potential in the continental rift zone of the Büyük Menderes, Western Anatolia, Turkey. In: Proceedings, fortieth workshop on geothermal reservoir engineering Stanford University, pp 26–28Google Scholar
  125. Özgür N, Pekdeger A, Wolf M, Stichler W, Seiler KP, Satir M (1998a) Hydrogeochemical and isotope geochemical features of the thermal waters of Kizildere, Salavatli, and Germencik in the rift zone of the Büyük Menderes, western Anatolia, Turkey: preliminary studies. In: Proceedings of 9th international symposium on water-rock interaction, Taupo, New Zealand, vol 30, pp 645–648Google Scholar
  126. Özgür N, Vogel M, Pekdeger A (1998b) A new type of hydrothermal alteration at the Kizildere geothermal field in the rift zone of the Biiyiik Menderes, western Anatolia, TurkeyGoogle Scholar
  127. Özkaymak Ç, Sözbilir H, Uzel B (2013) Neogene–Quaternary evolution of the Manisa Basin: evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia. J Geodyn 65:117–135CrossRefGoogle Scholar
  128. Pfister M, Rybach L, Simsek S (1998) Geothermal reconnaissance of the Marmara Sea region (NW Turkey): surface heat flow density in an area of active continental extension. Tectonophys Heat Flow Struct Lithos IV 291:77–89.  https://doi.org/10.1016/S0040-1951(98)00032-8 CrossRefGoogle Scholar
  129. Pik R, Marty B (2009) Helium isotopic signature of modern and fossil fluids associated with the Corinth rift fault zone (Greece): implication for fault connectivity in the lower crust. Chem Geol 266(1):67–75CrossRefGoogle Scholar
  130. Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res Solid Earth.  https://doi.org/10.1029/2002JB001757 CrossRefGoogle Scholar
  131. Prelević D, Akal C, Foley SF, Romer RL, Stracke A, Van Den Bogaard P (2012) Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. J Pet 53(5):1019–1055CrossRefGoogle Scholar
  132. Purvis M, Robertson A (2005) Sedimentation of the Neogene–Recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sediment Geol 173:373–408CrossRefGoogle Scholar
  133. Quilichini A, Siebenaller L, Nachlas WO, Teyssier C, Vennemann TW, Heizler MT, Mulch A (2015) Infiltration of meteoric fluids in an extensional detachment shear zone (Kettle dome, WA, USA): how quartz dynamic recrystallization relates to fluid-rock interaction. J Struct Geol 71:71–85CrossRefGoogle Scholar
  134. Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res Solid Earth 111:B05411.  https://doi.org/10.1029/2005JB004051 CrossRefGoogle Scholar
  135. Richardson-Bunbury JM (1996) The Kula volcanic field, western Turkey: the development of a Holocene alkali basalt province and the adjacent normal-faulting graben. Geol Mag 133(3):275–283CrossRefGoogle Scholar
  136. Ring U, Gessner K, Güngör T, Passchier CW (1999) The Menderes Massif of western Turkey and the Cycladic Massif in the Aegean—do they really correlate? J Geol Soc 156(1):3–6CrossRefGoogle Scholar
  137. Ring U, Johnson C, Hetzel R, Gessner K (2003) Tectonic denudation of a Late Cretaceous–Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geol Mag 140:421–441CrossRefGoogle Scholar
  138. Ring U, Glodny J, Will T, Thomson S (2010) The Hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Annu Rev Earth Planet Sci 38:45–76CrossRefGoogle Scholar
  139. Ring U, Gessner K, Thomson S (2017) Variations in fault-slip data and cooling history reveal corridor of heterogeneous backarc extension in the eastern Aegean Sea region. Tectonophysics 700:108–130CrossRefGoogle Scholar
  140. Roche V, Guillou-Frottier L, Jolivet L, Loiselet C, Bouchot V (2015) Subduction and slab tearing dynamics constrained by thermal anomalies in the Anatolia-Aegean region. In: Geophysical research abstracts, vol 17, EGU2015-6882, 2015 EGU General Assembly 2015Google Scholar
  141. Roche V, Sternai P, Guillou-Frottier L, Jolivet L, Gerya T (2016) Location of eastern Mediterranean hot springs induced by mantle heat flow due to slab roll-back and tearing. In: AGUGoogle Scholar
  142. Roche V, Sternai P, Guillou-Frottier L, Menant A, Jolivet L, Bouchot V, Gerya T (2018) Emplacement of metamorphic core complexes and associated geothermal systems controlled by slab dynamics. Earth Planet Sci Lett 498:322–333CrossRefGoogle Scholar
  143. Ross HE, Blakely RJ, Zoback MD (2006) Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics 71(5):L51–L59CrossRefGoogle Scholar
  144. Salaün G, Pedersen HA, Paul A, Farra V, Karabulut H, Hatzfeld D, Papazachos C, Childs DM, Pequegnat C, Team S, others (2012) High-resolution surface wave tomography beneath the Aegean-Anatolia region: constraints on upper-mantle structure. Geophys J Int 190:406–420CrossRefGoogle Scholar
  145. Schlinger CM (1985) Magnetization of lower crust and interpretation of regional magnetic anomalies: example from Lofoten and Vesterålen, Norway. J Geophys Res Solid Earth 90(B13):11484–11504CrossRefGoogle Scholar
  146. Scholz CH (1980) Shear heating and the state of stress on faults. J Geophys Res Solid Earth 85:6174–6184CrossRefGoogle Scholar
  147. Seyitoglu G (1997) The Simav graben: an example of young EW trending structures in the Late Cenozoic extensional system of western Turkey. Turk J Earth Sci 6:135–141Google Scholar
  148. Seyitoǵlu G, Scott BC, Rundle CC (1992) Timing of Cenozoic extensional tectonics in west Turkey. J Geol Soc 149(4):533–538CrossRefGoogle Scholar
  149. Seyitoǧlu G, Işik V (2015) Late Cenozoic extensional tectonics in western Anatolia: exhumation of the Menderes core complex and formation of related basins. Bull Miner Res Explor 151Google Scholar
  150. Seyitoǧlu G, Scott B (1991) Late Cenozoic crustal extension and basin formation in west Turkey. Geol Mag 128(2):155–166CrossRefGoogle Scholar
  151. Seyitoǧlu G, Tekeli O, Çemen I, Sen S, Isik V (2002) The role of the flexural rotation/rolling hinge model in the tectonic evolution of the Alasehir graben, western Turkey. Geol Mag 139:15–26CrossRefGoogle Scholar
  152. Seyitoǧlu G, Işık V, Cemen I (2004) Complete Tertiary exhumation history of the Menderes massif, western Turkey: an alternative working hypothesis. Terra Nova 16(6):358–364CrossRefGoogle Scholar
  153. Seyitoğlu G, Işik V, Esat K (2014) A 3D model for the formation of turtleback surfaces: the Horzum Turtleback of western Turkey as a case study. Turk J Earth Sci 23(5):479–494CrossRefGoogle Scholar
  154. Seyítoǧlu G, Scott BC (1996) The cause of NS extensional tectonics in western Turkey: tectonic escape vs back-arc spreading vs orogenic collapse. J Geodyn 22(1–2):145–153CrossRefGoogle Scholar
  155. Sheppard SMF (1977) The Cornubian batholith, SW England: D/H and 18O/16O studies of kaolinite and other alteration minerals. J Geol Soc 133(6):573–591CrossRefGoogle Scholar
  156. Sheppard SM (1981) Stable isotope geochemistry of fluids. Phys Chem Earth 13:419–445CrossRefGoogle Scholar
  157. Shimizu A, Sumino H, Nagao K, Notsu K, Mitropoulos P (2005) Variation in noble gas isotopic composition of gas samples from the Aegean arc, Greece. J Volcanol Geoth Res 140(4):321–339CrossRefGoogle Scholar
  158. Sibson RH, Moore JMM, Rankin AH (1975) Seismic pumping—a hydrothermal fluid transport mechanism. J Geol Soc 131(6):653–659CrossRefGoogle Scholar
  159. Simsek S (1985) Geothermal model of Denizli, Sarayköy-Buldan area. Geothermics 14:393–417CrossRefGoogle Scholar
  160. Simsek S (2003) Hydrogeological and isotopic survey of geothermal fields in the Buyuk Menderes graben, Turkey. Geothermics 32:669–678CrossRefGoogle Scholar
  161. Simsek S, Demir A (1991) Reservoir and cap rock characteristics of some geothermal fields in turkey and encountered problems based on lithology. J Geotherm Res Soc Jpn 13:191–204Google Scholar
  162. Şimşek Ş (1984) Aydin-Germencik-Omerbeyli geothermal field of Turkey. In: Proceeding of UN seminar on utilization of geothermal energy for electric power production and space heatingGoogle Scholar
  163. Souche A, Medvedev S, Andersen TB, Dabrowski M (2013) Shear heating in extensional detachments: implications for the thermal history of the Devonian basins of W Norway. Tectonophysics 608:1073–1085CrossRefGoogle Scholar
  164. Sözbilir H (2001) Extensional tectonics and the geometry of related macroscopic structures: field evidence from the Gediz detachment, western Turkey. Turk J Earth Sci 10:51–67Google Scholar
  165. Spakman W, Wortel R (2004) A tomographic view on Western Mediterranean geodynamics. In: Cavazza W, Roure FM, Spakman W, Stampfli GM, Ziegler PA (eds) The TRANSMED Atlas—the Mediterranean region from crust to Mantle. Springer, Berlin, pp 31–52CrossRefGoogle Scholar
  166. Taillefer A, Soliva R, Guillou-Frottier L, Le Goff E, Martin G, Seranne M (2017) Fault-related controls on upward hydrothermal flow: an integrated geological study of the têt fault system, eastern pyrénées (France). Geofluids 2017:8190109.  https://doi.org/10.1155/2017/8190109 CrossRefGoogle Scholar
  167. Tarcan G, Gemici Ü (2003) Water geochemistry of the Seferihisar geothermal area, Izmir, Turkey. J Volcanol Geotherm Res 126:225–242CrossRefGoogle Scholar
  168. Tarcan G, Filiz S, Gemici U (2000) Geology and geochemistry of the Salihli geothermal fields, Turkey. In: Books proceeding, pp 1829–1834Google Scholar
  169. Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69(6):843–883CrossRefGoogle Scholar
  170. Tekin S, Akin S (2011) Estimation of the formation temperature from the inlet and outlet mud temperatures while drilling geothermal formations. In: Proceedings of 36th workshop on geothermal reservoir engineering. Stanford University, StanfordGoogle Scholar
  171. Temiz U, Eikenberg J (2011) U/Th dating of the travertine deposited at transfer zone between two normal faults and their neotectonic significance: cambazli fissure ridge travertines (the Gediz Graben-Turkey). Geodinamica Acta 24(2):95–105Google Scholar
  172. Tezcan AK (1995) Geothermal explorations and heat flow in Turkey. Terr Heat Flow Geotherm Energy Asia 31:23–42Google Scholar
  173. Tureyen O, Gulgor A, Erkan B, Satman A (2016) Recent expansions of power plants in Figuris concession in the Germencik geothermal field, Turkey. In: ProceedingsGoogle Scholar
  174. Ulugergerli EU, Seyitoğlu G, Başokur AT, Kaya C, Dikmen U, Candansayar ME (2007) The geoelectrical structure of northwestern Anatolia, Turkey. Pure Appl Geophys 164(5):999–1026CrossRefGoogle Scholar
  175. Vengosh A, Helvacı C, Karamanderesi İH (2002) Geochemical constraints for the origin of thermal waters from western Turkey. Appl Geochem 17:163–183CrossRefGoogle Scholar
  176. Wannamaker PE, Hasterok DP, Doerner WM (2006) Possible magmatic input to the Dixie Valley geothermal field, and implications for district-scale resource exploration, inferred from magnetotelluric (MT) resistivity surveying. In: GRC 2006 annual meeting: geothermal resources-securing our energy futureGoogle Scholar
  177. Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290:1910–1917CrossRefGoogle Scholar
  178. Yildirim N, Aydogdu O, Sarp S (2005) Constraint problems and solution alternatives for potentially available integrated geothermal energy utilization in Turkey. In: Proceedings of world geothermal congress April 24–29Google Scholar
  179. Yilmaz Y, Genç ŞC, Gürer F, Bozcu M, Yilmaz K, Karacik Z, Altunkaynak Ş, Elmas A (2000) When did the western Anatolian grabens begin to develop? In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and magmatism in Turkey and the surrounding area, vol 173. Geological Society Special Publications, London, pp 353–384Google Scholar
  180. Yılmazer S, Karamanderesi İ (1994) Kurşunlu jeotermal alanının (Salihli-Manisa) jeolojisi ve jeotermal potansiteli. Dünya Enerji Konseyi Türkiye 6:17–22Google Scholar
  181. Yılmazer S, Pasvanoğlu S, Vural S (2010) The relation of geothermal resources with young tectonics in the Gediz graben (West Anatolia, Turkey) and their hydrogeochemical analyses. In: Proceedings world geothermal congress, pp 1–10Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ISTO, UMR7327, Université d’Orléans, CNRS, BRGMOrléansFrance
  2. 2.Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 7193ParisFrance
  3. 3.Middle East Technical UniversityDepartment of Geological EngineeringAnkaraTurkey
  4. 4.Center for Global Tectonics and State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  5. 5.Municipality of SalihliManisaTurkey

Personalised recommendations