International Journal of Earth Sciences

, Volume 108, Issue 1, pp 245–265 | Cite as

Evolution of the middle crust of the Pyrenees during the Paleozoic: new data on the plutonic rocks from the North Pyrenean Agly Massif

  • B. Tournaire Guille
  • Ph. OlivierEmail author
  • J. -L. Paquette
  • V. Bosse
  • D. Guillaume
Original Paper


The Variscan middle crust of the eastern Pyrenees is represented by the Bélesta and Caramany gneissic units of the North Pyrenean Agly Massif. In this study, we date and reinterpret the orthogneisses and granites composing these units. We characterize a recurrent plutonic activity spanning all the Paleozoic in this part of the Pyrenean crust. The Bélesta unit (amphibolite facies) is mainly composed of sills of (Latest Ediacaran)–Earliest Cambrian (542 ± 4 and 540 ± 4 Ma) orthogneisses (70% of the series), almost unknown in the Pyrenees until now, and Latest Carboniferous–(Earliest Permian) (307 ± 3–298 ± 3 Ma time span) granites (15% of the series). These plutonic rocks were emplaced in probably Ediacaran aluminous pelites later transformed into paragneisses (15% of the series). The Caramany unit (granulite facies) is mainly composed of Precambrian aluminous paragneisses migmatized during the Latest Carboniferous–(Earliest Permian) (299 ± 4 Ma), sills of Earliest Cambrian (529 ± 5 Ma) orthogneisses and sills (about 30% of the series) of Late Carboniferous (308 ± 3–299 ± 3 Ma) opx-bearing and opx-free granodiorites, grt-bearing leucogranites and norites. Among these last rocks, the Ansignan charnockite, forming a 800 m-thick laccolith near the base of the Caramany unit, and previously dated at 314 ± 6/7 Ma (Respaut, Lancelot, Neues Jahrbuch Miner Abh 147-1:21–34, 1983), is refined at 307 ± 3 Ma. Our results confirm the importance of the Late Carboniferous plutonism in deep levels of the Pyrenean crust, which largely resulted from recycling of older para- and orthoderived rocks of this crust. The emplacement of hundreds of metres in thickness of granites and other plutonic rocks in the Variscan Pyrenees occurred in a rather short time both as sills in these deep levels and as large plutons in shallower levels, a fact which necessarily had consequences on the HT–LP Carboniferous metamorphism.


Variscan Pyrenees North Pyrenean Agly Massif Orthogneiss Granite Ediacaran Earliest Cambrian Late Carboniferous Crust recycling Partial melting 



We are greatly indebted to P. Barbey, G. Gleizes, B. Laumonier, P. Micoud and O. Vanderhaeghe for discussions about a previous version of this paper. We also thank Ph. Goncalves and E. Druguet for their critical reviews. We thank Ch. Cavaré for drawings, J.-F. Mena for thin sections, and D. Baratoux for providing us chemical analyses of samples AG05E, AG05I and AG05T, and photographs of the Agly dam cross section. This work is a contribution to the ‘Référentiel géologique français’ program and was grant-aided by the Bureau de Recherches Géologiques et Minières (BRGM).


  1. Althoff F, Barbey P, Pons J (1994) La charnockite d’Ansignan et le granite de Saint-Arnac, témoins d’une extension crustale d’âge hercynien dans le massif de l’Agly (Pyrénées-Orientales, France). C R Acad Sci Paris 319-II:239–246Google Scholar
  2. Andrieux P (1982) Conditions de cristallisation et évolution paragénétique d’une charnockite hercynienne: le complexe granulitique d’Ansignan (massif de l’Agly, Pyrénées-Orientales). Bull Miner Paris 105:253–266Google Scholar
  3. Barbey P, Cheilletz A, Laumonier B (2001) The Canigou orthogneisses (Eastern Pyrenees, France, Spain): an Early Ordovician rapakivi granite laccolith and its contact aureole. C R Acad Sci Paris 332:129–136Google Scholar
  4. Berger GM, Fonteilles M, Leblanc D, Clauzon G, Marchal JP, Vautrelle C (1993) Notice explicative, carte géologique de France à 1/50 000, feuille Rivesaltes (1090). BRGM, Orleans, p 119Google Scholar
  5. Casas JM, Navidad M, Castiñeiras P, Liesa M, Aguilar C, Carreras J, Hofmann M, Gärtner A, Linnemann U (2015) The Late Neoproterozoic magmatism in the Ediacaran series of the Eastern Pyrenees: new ages and isotope geochemistry. Int J Earth Sci (Geol Rundsch) 104:909–925CrossRefGoogle Scholar
  6. Castiñeiras P, Navidad M, Liesa M, Carreras J, Casas JM (2008) U–Pb zircon ages (SHRIMP) for Cadomian and Early Ordovician magmatism in the Eastern Pyrenees: new insights into the pre-Variscan evolution of the northern Gondwana margin. Tectonophysics 461:228–239CrossRefGoogle Scholar
  7. Chelle-Michou C, Laurent O, Moyen JF, Block S, Paquette JL, Couzinié S, Gardien V, Vanderhaeghe O, Villaros A, Zeh A (2017) Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: formation of the West European crust in a nutshell. Gondwana Res 46:170–190CrossRefGoogle Scholar
  8. Cocherie A, Baudin T, Autran A, Guerrot C, Fanning CM, Laumonier B (2005) U–Pb zircon (ID-TIMS and SHRIMP) evidence for the early ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bull Soc Geol Fr 176-3:269–282CrossRefGoogle Scholar
  9. Couzinié S, Laurent O, Poujol M, Mintrone M, Chelle-Michou C, Moyen JF, Bouilhol P, Vezinet A, Marko L (2017) Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): implications for the crustal evolution of the north Gondwana margin. Lithos 286–287:16–34CrossRefGoogle Scholar
  10. Delaperrière E, Saint Blanquat M de, Brunel M, Lancelot J (1994) Géochronologie U–Pb sur zircons et monazites dans le massif du Saint Barthélemy (Pyrénées, France): discussion des âges des événements varisques et pré-varisques. Bull Soc Geol Fr 165-2:101–112Google Scholar
  11. Delay F (1990) Le massif nord-pyrénéen de l’Agly (Pyrénées Orientales). Evolution tectono-métamorphique. Exemple d’un amincissement crustal polyphasé. Soc Géol Nord, Publication 17, Villeneuve d’Ascq, vol 3, pp 34, 152, 393Google Scholar
  12. Deloule E, Alexandrov P, Cheilletz A, Laumonier B, Barbey P (2002) In situ U–Pb zircon ages for Early Ordovician magmatism in the Eastern Pyrenees, France: the Canigou orthogneisses. Int J Earth Sci (Geol Rundsch) 91:398–405CrossRefGoogle Scholar
  13. Denèle Y, Barbey P, Deloule E, Pelleter E, Olivier Ph, Gleizes G (2009) Middle Ordovician U–Pb age of the Aston and Hospitalet orthogneissic laccoliths: their role in the Variscan evolution of the Pyrenees. Bull Soc Geol Fr 180-3:209–216CrossRefGoogle Scholar
  14. Denèle Y, Laumonier B, Paquette JL, Olivier Ph, Gleizes G, Barbey P (2014) Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. Geol Soc Lond Spec Publ 405:265–287CrossRefGoogle Scholar
  15. Druguet E, Castro A, Chichorro M, Pereira MF, Fernández C (2014) Zircon geochronology of intrusive rocks from Cap de Creus, Eastern Pyrenees. Geol Mag 151:1095–1114CrossRefGoogle Scholar
  16. Ducrot J, Lancelot JR, Reille JL (1979) Datation en Montagne Noire d’un témoin d’une phase majeure d’amincissement crustal caractéristique de l’Europe prévarisque. Bull Soc Geol Fr 21(4):501–505CrossRefGoogle Scholar
  17. Faure M, Cocherie A, Bé Mézème E, Charles N, Rossi Ph (2010) Middle Carboniferous crustal melting in the Variscan belt: new insights from U–Th–Pbtot. monazite and U–Pb zircon ages of the Montagne Noire axial zone (southern French Massif Central). Gondwana Res 18:653–673CrossRefGoogle Scholar
  18. Fonteilles M (1976) Essai d’interprétation des compositions chimiques des roches d’origines métamorphique et magmatique du massif hercynien de l’Agly (Pyrénées orientales). Thèse Université de Paris VI, p 685Google Scholar
  19. Fonteilles M, Guitard G (1964) L’ effet de socle dans le métamorphisme hercynien de l’enveloppe paléozoïque des gneiss des Pyrénées. C R Acad Sci Paris 258:4299–4302Google Scholar
  20. Fonteilles M, Leblanc D, Clauzon G, Vaudin JL, Berger GM (1993) Carte géologique de la France (1/50 000), feuille Rivesaltes (1090). BRGM, OrleansGoogle Scholar
  21. Gleizes G, Leblanc D, Bouchez JL (1998) The main phase of the Hercynian orogeny in the Pyrenees is a dextral transpression. In: Holdsworth RE, Strachan RA, Dewey JF (eds) Continental transpressional and transtensional tectonics, vol 135. Geol Soc London, Special Publications, pp 267–273Google Scholar
  22. He XF, Santosh M (2014) Crustal recycling through intraplate magmatism: evidence from the trans-North China Orogen. J Asian Earth Sci 95:147–163CrossRefGoogle Scholar
  23. Hurai V, Paquette JL, Huraiová M, Konečný P (2010) Age of deep crustal magmatic chambers in the intra-Carpathian back-arc basin inferred from LA-ICPMS U–Th–Pb dating of zircon and monazite from igneous xenoliths in alkali basalts. J Volcan Geotherm Res 198:275–287CrossRefGoogle Scholar
  24. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211(1–2):47–69CrossRefGoogle Scholar
  25. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329CrossRefGoogle Scholar
  26. Lardeaux JM (2014) Deciphering orogeny: a metamorphic perspective. Examples from European Alpine and Variscan belts. Part II: Variscan metamorphism in the French Massif Central—a review. Bull Soc Geol Fr 185(5):281–310CrossRefGoogle Scholar
  27. Laumonier B, Autran A, Barbey P, Cheilletz A, Baudin T, Cocherie A, Guerrot C (2004) Conséquences de l’absence de socle cadomien sur l’âge et la signification des séries pré-varisques (anté-Ordovicien supérieur) du sud de la France (Pyrénées, Montagne Noire). Bull Soc Geol Fr 175:105–117Google Scholar
  28. Laumonier B, Calvet M, Le Bayon B, Barbey P, Lenoble JL (2015) Notice explicative de la feuille Prats-de-Mollo-La-Preste à 1/50 000. BRGM Éditions, Service géologique national, pp 189Google Scholar
  29. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: The diacrony of geotectonic processes constrained by LA-ICP-MS U–PB zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemain Massifs). Tectonophysics 461:21–43CrossRefGoogle Scholar
  30. Ludwig K (2001) User’s manual for Isoplot/Ex version 2.49, a geochronological toolkit for Microsoft Excel, Special Publication 1a. Berkeley Geochronological Center, Berkeley, p 55Google Scholar
  31. Martínez Catalán JR (2011) Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23:241–247CrossRefGoogle Scholar
  32. Melleton J, Cocherie A, Faure M, Rossi Ph (2010) Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U–Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res 17:13–25CrossRefGoogle Scholar
  33. Mezger JE, Gerdes A (2016) Early Variscan (Visean) granites in the core of central Pyrenean gneiss domes: implications from laser ablation U–Pb and Th–Pb studies. Gondwana Res 29:181–198CrossRefGoogle Scholar
  34. Moyen JF, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, Villaros A, Gardien V (2017) Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277:154–177CrossRefGoogle Scholar
  35. Olivier Ph, Gleizes G, Paquette JL (2004) Gneiss domes and granite emplacement in an obliquely convergent regime: New interpretation of the Variscan Agly Massif (Eastern Pyrenees, France). In: Whitney DL, Teyssier C, Siddoway CS (eds) Gneiss domes in orogeny, vol 380, pp 229–242 (Geol Soc Am Spec Pap) Google Scholar
  36. Olivier Ph, Gleizes G, Paquette JL, Muñoz Sáez C (2008) Structure and U–Pb dating of the Saint-Arnac pluton and the Ansignan charnockite (Agly Massif): a cross-section from the upper to the middle crust of the Variscan Eastern Pyrenees. J Geol Soc London 165:141–152CrossRefGoogle Scholar
  37. Olivier Ph, Druguet E, Castaño LM, Gleizes G (2016) Granitoid emplacement by multiple sheeting during Variscan dextral transpression: the Saint-Laurent–La Jonquera pluton (Eastern Pyrenees). J Struct Geol 82:80–92CrossRefGoogle Scholar
  38. Padel M, Álvaro JJ, Casas JM, Clausen S, Poujol M, Sánchez-García T (2017) Cadomian volcanosedimentary complexes across the Ediacaran–Cambrian transition of the Eastern Pyrenees, southwestern Europe. Int J Earth Sci. Google Scholar
  39. Paquette JL, Piro JL, Devidal JL, Bosse V, Didier A (2014) Sensitivity enhancement in LA-ICP-MS by N2 addition to carrier gas: application to radiometric dating of U–Th-bearing minerals. Agil ICP MS J 58:4–5Google Scholar
  40. Paquette JL, Ballèvre M, Peucat JJ, Cornen G (2017) From opening to subduction of an oceanic domain constrained by LA-ICP-MS U–Pb zircon dating (Variscan belt, Southern Armorican Massif, France). Lithos 294–295:418–437CrossRefGoogle Scholar
  41. Pereira MF, Castro A, Chichorro M, Fernández C, Díaz-Alvarado J, Martí J, Rodríguez C (2014) Chronological link between deep-seated processes in magma chambers and eruptions: Permo-Carboniferous magmatism in the core of Pangaea (Southern Pyrenees). Gondwana Res 25:290–308CrossRefGoogle Scholar
  42. Pitra P, Poujol M, Van Den Driessche J, Poilvet JC, Paquette JL (2012) Early Permian extensional shearing of an Ordovician granite: the Saint-Eutrope ‘C/S-like’ orthogneiss (Montagne Noire, French Massif Central). C R Géosci 344:377–384CrossRefGoogle Scholar
  43. Raumer JF von, Stampfli GM, Arenas R, Sánchez Martínez S (2015) Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. Int J Earth Sci (Geol Rundsch) 104:1107–1121CrossRefGoogle Scholar
  44. Respaut JP, Lancelot JR (1983) U/Pb dating on zircons and monazites of the synmetamorphic emplacement of the Ansignan charnockite (Agly Massif-France). Neues Jahrb Miner Abh 147-1:21–34Google Scholar
  45. Roger F, Respaut JP, Brunel M, Matte P, Paquette JL (2004) Première datation U–Pb des orthogneiss œillés de la zone axiale de la Montagne noire (Sud du Massif central): nouveaux témoins du magmatisme ordovicien dans la chaîne Varisque. C R Géosci 336:19–28CrossRefGoogle Scholar
  46. Safonova I (2017) Juvenile versus recycled crust in the Central Asian Orogenic belt: implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Res 47:6–27CrossRefGoogle Scholar
  47. Stampfli GM, Hochard C, Vérard C, Wilhem C, Raumer J von (2013) The formation of Pangea. Tectonophysics 593:1–19CrossRefGoogle Scholar
  48. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Sanders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42, pp 313–345 (Geol Soc Lond Spec Publ) Google Scholar
  49. Touil A, Garcia D, Fonteilles M (1996) Diversité chimique du matériel basique associé aux granitoïdes: le massif d’Ansignan (Pyrénées Orientales varisques, France). C R Acad Sci Paris 322-IIa:25–32Google Scholar
  50. Van Achterbergh E, Ryan C, Jackson S, Griffin W (2001) Data reduction software for LA-ICP-MS. In: Sylvester P (ed) Laser ablation-ICPMS in the Earth science. Mineralogical Association of Canada, Québec, pp 239–243Google Scholar
  51. Van Lichtervelde M, Grand’Homme A, Saint-Blanquat M de, Paquette OPh,GA, Melgarejo JL, Druguet JC, Alfonso E P (2017) U–Pb geochronology on zircon and columbite-group minerals of the Cap de Creus pegmatites, NE Spain. Miner Pet 111:1–21CrossRefGoogle Scholar
  52. Vielzeuf D (1984) Relations de phases dans le faciès granulite et implications géodynamiques. L’exemple des granulites des Pyrénées. Doctorate thesis, Clermont-Ferrand University, p 288Google Scholar
  53. Vielzeuf D (1996) Les massifs nord-pyrénéens à soubassement granulitique. In: Barnolas A, Chiron JC (eds) Synthèse géologique et géophysique des Pyrénées. Introduction. Géophysique. Cycle hercynien, vol 1. BRGM-ITGE, Orleans, pp 502–521Google Scholar
  54. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt A von, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19(1):1–23CrossRefGoogle Scholar
  55. Wood DA, Joron JL, Treuil M (1979) A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet Sci Lett 45:326–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.iSTeP-UMR 7193, Université Pierre et Marie Curie-P6Paris Cedex 05France
  2. 2.Géosciences Environnement Toulouse (GET) and UMR 5563, Université de Toulouse, CNRS, IRD, OMPToulouseFrance
  3. 3.L’unionFrance
  4. 4.Laboratoire Magmas et VolcansUniversité Clermont Auvergne, CNRS, IRD, OPGCClermont-FerrandFrance
  5. 5.Université Lyon, UJM-Saint-Etienne, UCA, CNRS, IRD, LMV UMR 6524Saint-EtienneFrance

Personalised recommendations