International Journal of Earth Sciences

, Volume 108, Issue 1, pp 173–182 | Cite as

Quantitative temperature recovery from middle Eocene halite fluid inclusions in the easternmost Tethys realm

  • Yang Xu
  • Chenglin LiuEmail author
  • Yangtong Cao
  • Hua Zhang
Original Paper


Middle Eocene climatic reconstruction has long been the focus of geoscientists. However, quantitative temperature records for this interval remain lacking. The easternmost Tethys realm is especially problematic, because the traditional climatic proxies are limited by the presence of widespread and thick evaporite deposits. In this study, we present the first quantitative seawater temperatures records revealed by homogenization temperatures (Th) of primary halite fluid inclusions from the Middle Eocene Xiaokuzibai Formation of the Kuqa Basin in western China. A total of 231 Th data were obtained from two halite samples, with values ranging from 12.8 to 37.3 °C. Average Th values of 22.4 °C and 23.3 °C are in good agreement with the previous studies of climatic proxies. By combining our results with previously reported temperature records, we infer that the entire Tethys realm experienced similar climate conditions during the Middle Eocene, including a maximum seawater temperature above 34 °C, which may be related to the Middle Eocene Climatic Optimum.


Paleotemperature Homogenization temperature Halite primary fluid inclusions Middle Eocene Tethys realm 



This study was supported by Major State Basic Research Development Program of China (No. 2011CB403007) and the Scientific and Technical Supporting Project during the National Twelfth Five-Year Plan Period (No. 2011BAB06B06) and  National Natural Science Foundation of China (No. 41602100). We especially thank the Editor-in-Chief and anonymous reviewers and Professor Steffen Mischke for constructive comments and suggestions that have greatly improved the quality of this manuscript.


  1. Abels HA, Dupont-Nivet G, Xiao G, Bosboom R, Krijgsman W (2011) Step-wise change of Asian interior climate preceding the Eocene-Oligocene Transition (EOT). Palaeogeogr Palaeoclimatol Palaeoecol 299(3–4):399–412CrossRefGoogle Scholar
  2. Benison KC (1995) Permian surface water temperatures from Nippewalla Group halite, Kansas. Carbonates Evaporites 10(2):245–251CrossRefGoogle Scholar
  3. Benison KC, Goldstein RH (1999) Permian paleoclimate data from fluid inclusions in halite. Chem Geol 154(1–4):113–132CrossRefGoogle Scholar
  4. Bohaty SM, Zachos JC (2003) Significant Southern Ocean warming event in the late middle Eocene. Geology 31(11):1017–1020CrossRefGoogle Scholar
  5. Bohaty SM, Zachos JC, Florindo F, Delaney ML (2009) Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 24:PA2207CrossRefGoogle Scholar
  6. Bolle MP, Adatte T (2004) Palaeocene-early Eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Miner 36(2):249–261CrossRefGoogle Scholar
  7. Bosboom RE, Dupont-Nivet G, Houbet AJP, Brinkhuis H, Villa G, Mandic O, Stoica M, Zachariasse WJ, Guo Z, Li C (2011) Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol 299(3–4):385–398CrossRefGoogle Scholar
  8. Bosboom R, Dupont-Nivet G, Grothe A, Brinkhuis H, Villa G, Mandic O, Stoica M, Huang W, Yang W, Guo Z, Krijgsman W (2014) Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Res 26(5):621–640CrossRefGoogle Scholar
  9. Bougeois L, Rafélis MD, Reichart GJ, Nooijer LJ, Nicollin F, Dupont-Nivet G (2014) A high resolution study of trace elements and stable isotopes in oyster shells to estimate Central Asian Middle Eocene seasonality. Chem Geol 363(363):200–212CrossRefGoogle Scholar
  10. Bougeois L, De Rafélis M, Reichart GJ, Nooijer LJD, Dupont-Nivet G (2016) Mg/Ca in fossil oyster shells as palaeotemperature proxy, an example from the Palaeogene of Central Asia. Palaeogeogr Palaeoclimatol Palaeoecol 441:611–626CrossRefGoogle Scholar
  11. Bralower TJ, Silva IP, Malone MJ (2002) New evidence for abrupt climate change in the Cretaceous and Paleogene: ocean drilling program Leg 198 to Shatsky Rise, Northwest Pacific. Gsa Today 12(11):4–10CrossRefGoogle Scholar
  12. Burtman VS (2000) Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene. Tectonophysics 319(2):69–92CrossRefGoogle Scholar
  13. Burtman VS, Skobelev SF, Molnar P (1996) Late Cenozoic slip on the Talas-Ferghana Fault, the Tien Shan, central Asia. Geol Soc Am Bull 108(8):1004–1021CrossRefGoogle Scholar
  14. Cowgill E (2010) Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. Geol Soc Am Bull 122(1):145–161CrossRefGoogle Scholar
  15. Dercourt J, Ricou LE, Vrielynck B (1993) Atlas tethys paleoenvironmental maps. Commision for the Geological Map of the World, ParisGoogle Scholar
  16. Fang AM, Ma JY, Wang SG, Zhao Y, Hu JM (2009) Sedimentary tectonic evolution of the southwestern Tarim Basin and west Kunlun orogen since Late Paleozoic. Acta Pet Sin 25(12):3396–3406 (in Chinese with English abstract) Google Scholar
  17. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. Society for Sedimentary Geology, TulsaCrossRefGoogle Scholar
  18. Graham SA, Hendrix MS, Wang LB, Carroll AR (1993) Collision success or basin of western China: impact of tectonic in heritance on sand composition. Geol Soc Am Bull 105(3):323–324CrossRefGoogle Scholar
  19. Guo XP, Ding XZ, He XX, Li HM, Su X, Peng Y (2002) New process in the study of marine transgressional events and marine strata of the Meso-Cenozoic in the Tarim Basin. Acta Geol Sin 76(3):299–307 (in Chinese with English abstract) Google Scholar
  20. Hao Y (1982) Late Cretaceous and Tertiary strata and Foraminifera in western Talimu Basin. Sci China (Earth Sci) 2:119–146 (in Chinese with English abstract) Google Scholar
  21. Holser WT (1979) Mineralogy of evaporites. Mar Miner 6:211–294CrossRefGoogle Scholar
  22. Inglis GN, Farnsworth A, Lunt D, Foster GL, Hollis CJ, Pagani M, Jardine PE, Pearson PN, Markwick P, Galsworthy AMJ, Raynham L, Taylor KWR, Pancost RD (2015) Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography 30(7):1000–1020CrossRefGoogle Scholar
  23. Jia CZ (1997) Tectonic characteristics and petroleum, Tarim Basin, China. Petroleum Industry Press, Beijing (in Chinese with English abstract) Google Scholar
  24. Jin RG (1985) Conditions of the formation of paleogene terrigenous evaporite in Kuche Bain, Xinjiang. Bull Inst Geol Chin Acad Geol Sci 33:62 (in Chinese with English abstract) Google Scholar
  25. Khatibi Mehr M, Adabi MH (2009) Application of large benthic foraminifera as a tool for interpretation of paleoclimate and water depth, in the Ziyarat Formation, Alborz, Iran[C]//EGU General Assembly Conference. EGU Gen Assembly Conf Abstr 11:4096Google Scholar
  26. Lei GL, Wang X, Wu C, Li Q, Xu ZP (2014) Characteristics of salt-related tectonics and deformation mechanism in the Kuqa foreland basin, Tarim Basin. Petroleum Industry Press, Beijing (in Chinese with English abstract) Google Scholar
  27. Lowenstein TK, Hardie LA (1985) Criteria for the recognition of salt-pan evaporites. Sedimentology 32(5):627–644CrossRefGoogle Scholar
  28. Lowenstein TK, Li JR, Brown CB (1998) Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chem Geol 150(3–4):223–245CrossRefGoogle Scholar
  29. Lu HF, Howell DG, Jia D, Cai DS, Wu SM, Chen CM, Valin ZC, Shi YS (1994) Rejuvenation of the Kuqa Foreland Basin, northern flank of the Tarim Basin, Northwest China. Int Geol Rev 36(12):1151–1158CrossRefGoogle Scholar
  30. Mao S, Norris G (1988) Late Cretaceous–early Tertiary Dinoflagellates and Acritarchs from the Kashi Area, Tarim Basin, Xinjiang Province, China. Royal Ontario Museum, TorontoCrossRefGoogle Scholar
  31. Mcinerney FA, Wing SL (2011) The Paleocene–Eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Earth Planet Sci 39(39):489–516CrossRefGoogle Scholar
  32. Meng FW, Ni P, Ge ZD, Wang TG, Wang GG, Liu JQ, Zhao C (2011) Homogenization temperature of fluid inclusions in laboratory grown halite and its implication for paleotemperature reconstruction. Acta Pet Sin 27(5):1543–1547 (in Chinese with English abstract) Google Scholar
  33. Miller KG, Wright JD, Fairbanks RG (1991) Unlocking the ice house: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J Geophys Res Solid Earth 96(B4):6829–6848CrossRefGoogle Scholar
  34. Mix HT, Chamberlain CP (2014) Stable isotope records of hydrologic change and paleotemperature from smectite in Cenozoic western North America. Geochim Cosmochim Acta 141:532–546CrossRefGoogle Scholar
  35. Nicolo MJ, Dickens GR, Hollis CJ, Zachos JC (2007) Multiple early Eocene hyperthermals: their sedimentary expression on the New Zealand continentalmargin and in the deep sea. Geology 35(8):699–702CrossRefGoogle Scholar
  36. Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309(5734):600–603CrossRefGoogle Scholar
  37. Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406(6797):695–699CrossRefGoogle Scholar
  38. Petrichenko IO (1979) Methods of study of inclusions inminerals in saline deposits. Fluid Inclus Res 12:114–274Google Scholar
  39. Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kováč M (2004) Lithological-paleogeographic maps of Paratethys. 10 Maps Late Eocene to Pliocene. Cour Forsch-Inst Senckenberg 250:1–46Google Scholar
  40. Roberts SM, Spence RJ (1995) Paleotemperatures preserved in fluid inclusions in halite. Geochim Cosmochim Acta 59(19):3929–3942CrossRefGoogle Scholar
  41. Roedder E (1984) The fluids in salt. Am Miner 69(5):413–439Google Scholar
  42. Roedder E, Belkin HE (1980) Thermal gradient migration of fluid inclusions in single crystals of salt from the Waste Isolation Pilot Plant site (WIPP). Scientific Basis for Nuclear Waste Management. Springer, US, pp 453–464Google Scholar
  43. Rögl F (1999) Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene Paleogeography (short overview). Geol Carpath 50(4):339–349Google Scholar
  44. Röhl U, Westerhold T, Bralower TJ, Zachos JC (2013) On the duration of the Paleocene–Eocene thermal maximum (PETM). Geochem Geophys Geosyst. Google Scholar
  45. Sexton PF, Norris RD, Wilson PA, Palike H, Westerhold T, Rohl U, Bolton CT, Gibbs S (2011) Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature 471(7338):349–352CrossRefGoogle Scholar
  46. Song TR (1984) Tertiary terrestrial-marine transitional carbonates in Kuqa Basin, Xinjiang. Acta Sedimentol Sin 2(3):48–59 (in Chinese with English abstract) Google Scholar
  47. Tang T, Yang H, Lan X, Yu C, Xue Y, Zhang Y, Hu L, Zhong S, Wei J (1989) Marine late Cretaceous and early Tertiary stratigraphy and petroleum geology in Western Tarim Basin, China. Science Press, Beijing (in Chinese with English abstract) Google Scholar
  48. Teng ZH, Yue LP, He DF, Deng XQ, Bian XW (1997) Magnetostratigraphic research of Cenozoic section of Kuche River area, South Xinjiang. J Stratigr 21(1):55–62 (in Chinese with English abstract) Google Scholar
  49. Wang HZ (1985) Paleogeophic atlas of China. China Cartographic Publishing House, Beijing (in Chinese with English abstract) Google Scholar
  50. Wilf P, Labandeira CC (1999) Response of plant–insect associations to Paleocene–Eocene warming. Science 284(5423):2153–2158CrossRefGoogle Scholar
  51. Wing SL, Greenwood DR (1993) Fossils and foddil climate: the case for equable continental interiors in the Eocene. Philos Trans Biol Sci 341(1297):243–252CrossRefGoogle Scholar
  52. Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH (2005) Transient floral change and rapid global warming at the Paleocene–Eocene boundary. Science 310(5750):993–998CrossRefGoogle Scholar
  53. Yang Y, Liu M (2002) Cenozoic deformation of the Tarim Plate and the implications for mountain building in the Tibetan Plateau and the Tian Shan. Tectonics 21(6):9-1–9-17Google Scholar
  54. Yin A, Harrison MT (2000) Geologic evolution of the Himalayan–Tibetan orogen. Annu Rev Earth Planet Sci 28(28):211–280CrossRefGoogle Scholar
  55. Yuan JQ, Cai KQ, Xiao RG, Chen HQ (1991) The characteristics and genesis of inclusions in salt from Mengyejing potash deposit in Yunnan Province. Earth Sci J China Univ Geosci 16(2):137–142 (in Chinese with English abstract) Google Scholar
  56. Zachos JC, Wara MW, Bohaty S, Delaney ML, Petrizzo MR, Brill A, Bralower TJ, Premoli-Silva I (2003) A transient rise in tropical sea surface temperature during the Paleocene–Eocene thermal maximum. Science 302(5650):1551–1554CrossRefGoogle Scholar
  57. Zachos JC, Schouten S, Bohaty S, Quattlebaum T, Sluijs A, Brinkhuis H, Gibbs SJ, Bralower TJ (2006) Extreme warming of mid-latitude coastal ocean during the Paleocene–Eocene thermal maximum: inferences from TEX86 and isotope data. Geology 34(9):737–740CrossRefGoogle Scholar
  58. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451(7176):279–283CrossRefGoogle Scholar
  59. Zambito JJ, Benison KC (2013) Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology 41(5):587–590CrossRefGoogle Scholar
  60. Zeebe RE (2013) What caused the long duration of the Paleocene–Eocene thermal maximum?. Paleoceanography 28(3):440–452CrossRefGoogle Scholar
  61. Zhang CJ, Tian ZY (1998) Tertiary salt structures and hydrocarbons in Kuqa depression of Tarim Basin. Acta Pet Sin 19(1):6–11 (in Chinese with English abstract) Google Scholar
  62. Zhang YM, He GZ, Wang ZR (1982) Analysis of the tertiary salt rock system and potassium fertilizer in Kuqa Basin. Northwestern Geol 4:44–52 (in Chinese with English abstract) Google Scholar
  63. Zhang H, Liu CL, Zhao YJ, Mischke S, Fang XM, Ding T (2015) Quantitative temperature records of mid Cretaceous hothouse: evidence from halite fluid inclusions. Palaeogeogr Palaeoclimatol Palaeoecol 437:33–41CrossRefGoogle Scholar
  64. Zhang H, Lü FL, Liu CL, Mischke S, Fan ML, Zhang F, Liu CL (2017) Halite fluid inclusions and the late Aptian sea surface temperatures of the Congo Basin, northern South Atlantic Ocean. Cretac Res 71:85–95CrossRefGoogle Scholar
  65. Zhao YJ, Zhang H, Liu CL, Liu BK, Ma LC, Wang LC (2014) Late Eocene to early Oligocene quantitative paleotemperature record: evidence from continental halite fluid inclusions. Sci Rep 4:5776CrossRefGoogle Scholar
  66. Zheng M, Meng ZF (2006) Magnetostratigraphy of tertiary system in Baicheng, Xinjiang. Acta Sedimentol Sin 24(5):650–656 (in Chinese with English abstract) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yang Xu
    • 1
    • 2
  • Chenglin Liu
    • 1
    Email author
  • Yangtong Cao
    • 1
  • Hua Zhang
    • 1
  1. 1.MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral ResourcesChinese Academy of Geological SciencesBeijingChina
  2. 2.State Key Laboratory of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangChina

Personalised recommendations