Advertisement

International Journal of Earth Sciences

, Volume 107, Issue 8, pp 2975–2998 | Cite as

Late Triassic acidic volcanic clasts in different Neotethyan sedimentary mélanges: paleogeographic and geodynamic implications

  • Szilvia KövérEmail author
  • László Fodor
  • Zoltán Kovács
  • Urs Klötzli
  • János Haas
  • Norbert Zajzon
  • Csaba Szabó
Original Paper

Abstract

U/Pb zircon dating and trace element geochemical analysis were performed on rhyolite clasts of different Middle Jurassic sedimentary mélanges from the Western Carpathian and Dinaric orogen. These igneous clast-bearing sedimentary successions were deposited on the westernmost passive margin of the Neotethys Ocean. During the latest Jurassic and Cretaceous, they became parts of different nappe stacks forming now the Inner Western Carpathians and some inselbergs within the Pannonian Basin. The Meliata nappe was stacked on the northern passive margin, while the Telekesoldal and Mónosbél nappes were part of the imbricated western–southwestern margin. U/Pb dating of the 100 m-sized rhyolite blocks and redeposited smaller clasts within the mélange, and fine-grained sediments formed two age groups: 222.6 ± 6.7 and 209.0 ± 9 Ma. Trace element geochemistry suggested within-plate continental volcanism as magma source. However, the measured ages are definitely younger than the classic, rift-related Anisian–Ladinian (238–242 Ma) magmatism, which was wide-spread along the western and southwestern margin of the Neotethys Ocean (e.g., Dolomites and different Dinaridic units). On the other hand, similarly, Late Triassic ages are reported from tuff intercalations from the Outer Dinarides and Western Carpathians, along with even more sparse effusive rocks of the Slovenian Trough. Trace element (incl. rare-earth element) analysis showed positive correlation between the mélange clasts and the in situ Late Triassic rhyolites of the Slovenian Trough. This newly established link between the mélange nappes in NE Hungary and the in situ Late Triassic rhyolites in the Slovenian Trough make a good opportunity to reconsider both Middle Jurassic paleogeography, and later tectonic deformations, which led to the separation of the source area and the redeposited clasts.

Keywords

Neotethys Ocean Late Triassic rifting Rift-related magmatism U–Pb ages Geodynamic model 

Notes

Acknowledgements

Sampling, U–Pb, and geochemical measurements were supported by the Hungarian National Science Fund (OTKA) grant number K 113013 and Slovenian CEEPUS scholarship of Sz. Kövér. Useful comments and questions of Dušan Plašienka and an anonymous reviewer highly improved the manuscript.

References

  1. Árkai P, Faryad SW, Vidal O, Balogh K (2003) Very low-grade metamorphism of sedimentary rocks of the Meliata unit, Western Carpathians, Slovakia: implications of phyllosilicate characteristics. Int J Earth Sci 92:68–85Google Scholar
  2. Aubrecht R, Gawlick HJ, Missoni S, Plašienka D (2012) Meliata type locality revisited: evidence for the need of reinvestigation of the Meliata Unit and redefinition of the Meliata Mélange. Mineralia Slovaca, 44 Web ISSN 1338–3523, ISSN 0369–2086Google Scholar
  3. Balla Z (1983) A szarvaskői szinform rétegsora és tektonikája. Annu Rep Eötvös Loránd Geophysical Inst Hung 1982:42–65Google Scholar
  4. Balla Z, Baksa CS, Földessy J, Havas L, Szabó I (1980) The tectonic setting of ophiolites in the Bükk Mountains (North Hungary). Geologicky Zbornik–Geol Carpath 31(4):465–493Google Scholar
  5. Behrmann JH, Tanner DC (2006) Structural synthesis of the Northern Calcareous Alps, TRANSALP segment. Tectonophysics 414:225–240CrossRefGoogle Scholar
  6. Bertotti G, Picotti V, Bernoulli D, Castellarin A (1993) From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous. Sed Geol 86(1–2):53–76.  https://doi.org/10.1016/0037-0738(93)90133-P CrossRefGoogle Scholar
  7. Budai T, Németh K, Piros O (2004) Middle Triassic platform carbonates and volcanites in the Latemar area (Dolomites, Italy). Annu Rep Hung Geol Inst 2004:175–188 (in Hungarian with English abstract)Google Scholar
  8. Castellarin A, Lucchini F, Rossi PL, Selli L, Simboli G (1988) The middle Triassic magmatic-tectonic arc development in the southern Alps. Tectonophysics 146:79–89CrossRefGoogle Scholar
  9. Csontos L (1988) Etude géologique d’une portion des Carpathes Internes, le massif du Bükk (Nord-est de la Hongrie), (stratigraphie, structures, métamorphisme et géodinamique). Ph. D. thesis, University Lille Flandres-Artois, no. 250Google Scholar
  10. Csontos L (1999) Structural outline of the Bükk Mts. (N Hungary). Földtani Közlöny 129(4):611–651 (in Hungarian with English abstract).Google Scholar
  11. Csontos L (2000) Stratigraphic reevaluation of the Bükk Mts (N. Hungary). Földtani Közlöny 130:95–131 (in Hungarian with English abstract).Google Scholar
  12. Csontos L, Nagymarosy A (1998) The Mid-Hungarian line: a zone of repeated tectonic inversion. Tectonophysics 297:51–72CrossRefGoogle Scholar
  13. Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210:1–56CrossRefGoogle Scholar
  14. Dallmeyer RD, Neubauer F, Handler R, Fritz H, Müller W, Pana D, Putiš M (1996) Tectonothermal evolution of the internal Alps and Carpathians: Evidence from 40Ar/39Ar mineral and whole-rock data. Eclogae Geol Helv 89:203–227Google Scholar
  15. Dallmeyer RD, Neubauer F, Fritz H (2008) The Meliata suture in the Carpathians: regional significance and implications for the evolution of high-pressure wedges within collisional orogens. In: Siegesmund S, Fügenschuh B, Froitzheim N (eds) Tectonic aspects of the Alpine-Dinaride-Carpathian system, Geol Soc, Sp Publ, vol 298, pp 101–115Google Scholar
  16. Deák-Kövér S (2012) Structure, metamorphism, geochronology and deformation history of Mesozoic formations in the central Rudabánya Hills. PhD dissertation, Eötvös University, Budapest pp 162Google Scholar
  17. Dercourt J, Ricou LE, Adamia S, Csfiszfir G, Funk H, Lefeld J, Rakfs M, Sandulescu M, Tollmann A, Tchoumachenko P (1990) Anisian to Oligoccne paleogeography of the European margin of Tethys (Geneva to Baku). Mém Soc Géol France 154:159–190Google Scholar
  18. Đerić N, Gerzina N, Schmid MS (2007) Age of the Jurassic radiolarian chert formation from the Zlatar Mountain (SW Serbia). Ofioliti 32/ 2:101–108Google Scholar
  19. Đerić N, Schmid SM, Gerzina N (2012) Middle Jurassic radiolarian assemblages from the sedimentary cover of the Adriatic margin (Zlatar Mountain, SW Serbia). Bull Soc Géol France 183(4):359-368Google Scholar
  20. Dimitrijević M (1982) Dinarides: an outline of the tectonics. Earth Evol Sci 1:4–23Google Scholar
  21. Dimitrijević MN, Dimitrijević MD, Karamata S, Sudar M, Gerzina N, Kovács S, Dosztály L, Gulácsi Z, Less GY, Pelikán P (2003) Olistostrome/mélanges—an overview of the problems and preliminary comparison of such formations in Yugoslavia and NE Hungary. Slovak Geol Mag 9(1):3–21Google Scholar
  22. Dimo-Lahitte A, Monié P, Vergély P (2001) Metamorphic soles from the Albanian ophiolites: petrology, 40Ar/39Ar geochronology, and geodynamic evolution. Tectonics 20:78–96CrossRefGoogle Scholar
  23. Faryad SW (1995) Phase petrology of mafic blueschists of the Meliata Unit (Western Carpathians)—Slovakia. J Metamorph Geol 13:432–448CrossRefGoogle Scholar
  24. Faryad SW (1997) Lithology and metamorphism of the Meliata unit high-pressure rocks. In: Grecula P, Hovorka D, Putis M (eds) Geological evolution of the Western Carpathians. Mineralia Slovaka Corp Geocomplex as Geol Surv Slovak Republic, Bratislava, pp 131–144Google Scholar
  25. Faryad SW, Henjes-Kunst F (1997) K-Ar and Ar-Ar age constraints of the Meliata blueschist facies rocks, the Western Carpathians (Slovakia). Tectonophysics 280:141–156CrossRefGoogle Scholar
  26. Faryad SW, Spišiak J, Horváth P, Hovorka D, Dianiška I, Józsa S (2005) Petrological and geochemical features of the Meliata mafic rocks from the sutured Triassic oceanic basin, Western Carpathians. Ofioliti 30:27–35Google Scholar
  27. Festa A, Pini GA, Dilek Y, Codegone G (2010a) Mélanges and mélange forming processes: historical overview and new concepts. Int Geol Rev 52:1040–1105CrossRefGoogle Scholar
  28. Festa A, Pini GA, Dilek Y, Codegone G, Vezzani L, Ghisetti F, Lucente CC, Ogata K (2010b) Peri-Adriatic mélanges and their evolution in the Tethyan realm. Int Geol Rev 52:369–406CrossRefGoogle Scholar
  29. Fodor L, Radócz GY, Sztanó O, Koroknai B, Csontos L, Harangi SZ (2005) Tectonics, sedimentation and magmatism along the Darnó Zone. Post-Conference Excursion Guide for 3rd Meeting of the Central European Tectonic Studies Group, Felsőtárkány, Hungary. Geolines 19:142–162Google Scholar
  30. Frank W, Schlager W (2006) Jurassic strike slip versus subduction in the Eastern Alps. Int J Earth Sci 95:431–450CrossRefGoogle Scholar
  31. Furnes H, Dilek Y (2017) Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: a global synthesis. Earth-Sci Rev 166:1–37CrossRefGoogle Scholar
  32. Furrer H, Schaltegger U, Ovtcharova M, Meister P (2008) U-Pb zircon age of volcaniclastic layers in Middle Triassic platform carbonates of the Austroalpine Silvretta nappe (Switzerland). Swiss J Geosci 101(3):595–603CrossRefGoogle Scholar
  33. Gawlick H-J, Missoni S (2015) Middle Triassic radiolarite pebbles in the Middle Jurassic Hallstatt Mélange of the Eastern Alps: implications for Triassic-Jurassic geodynamic and palaeogeo-graphic reconstructions of the western Tethyan realm. Facies 61(3):13CrossRefGoogle Scholar
  34. Gawlick H-J, Frisch W, Hoxha L, Dumitrica P, Krystyn L, Lein R, Missoni S, Schlagintweit F (2008) Mirdita Zone ophiolites and associated sediments in Albania reveal Neotethys Ocean origin. Intern J Earth Sci 9:865–881CrossRefGoogle Scholar
  35. Gawlick H-J, Missoni S, Schlagintweit F, Suzuki H (2012) Jurassic active continental margin deep-water basin and carbonate platform formation in the north-western Tethyan realm (Austria, Germany). J Alp Geol 54:89–292Google Scholar
  36. Gawlick H-J, Sudar MN, Missoni S, Suzuki H, Lein R, Jovanovic D (2017) Triassic—Jurassic geodynamic history of the Dinaric Ophiolite Belt (Inner Dinarides, SW Serbia). J Alpine Geol 55:1–167Google Scholar
  37. Goričan S (2012) Mesozoic deep-water basins of the eastern Southern Alps (NW Slovenia). IAS Field Trip Guidebook, pp 101–143Google Scholar
  38. Gorton MP, Schandal ES (2000) From continents to Island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073CrossRefGoogle Scholar
  39. Grad K, Ferjančič L, Buser S, Cimerman F, Doset S, Mioč P, Premru U, Vujič D, Žlebnik L, Žnidarčič M (1974) Basic Geological Map of Former Yugoslavia 1:100000, Sheet L 33–65 Kranj. Institute for Geological and Geophysical Research, Belgrade (in Serbian)Google Scholar
  40. Grill J (1988) Jurassic formations of the Rudabánya Mts. Ann Rep Hung Geol Inst 1986:69–103 (in Hungarian with English abstract)Google Scholar
  41. Grill J, Kovács S, Less GY, Réti ZS, Róth L, Szentpétery I (1984) Geology and evolutionary history of the Aggtelek-Rudabánya Mountains (in Hungarian). Földtani Kutatás 27:49–56Google Scholar
  42. Haas J, Kovács S (2001) The Dinaric–Alpine connection—as seen from Hungary. Acta Geol Hung 44(2–3):345–362Google Scholar
  43. Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of Late Permian-Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics 242:19–40CrossRefGoogle Scholar
  44. Haas J, Görög Á, Kovács S, Ozsvárt P, Matyók I, Pelikán P (2006) Displaced Jurassic foreslope and basin deposits of Dinaric origin in Northeast Hungary. Acta Geol Hung 49(2):125–163CrossRefGoogle Scholar
  45. Haas J, Budai T, Csontos L, Fodor L, Konrád G (2010b) Pre-Cenozoic geological map of Hungary 1:500 000. Geological Institute of Hungary, BudapestGoogle Scholar
  46. Haas J, Kovács S, Gawlick H-J, Grădinaru E, Karamata S, Sudar M, Péró CS, Mello J, Polák M, Ogorelec B, Buser S (2011a) Jurassic evolution of the tectonostratigraphic units in the Circum-Pannonian region. Jahrbuch der Geologischen Bundesanstalt 151:281–354Google Scholar
  47. Haas J, Kovács S, Pelikán P, Kövér S, Görög Á, Ozsvárt P, Józsa S, Németh N (2011b) Remnants of the accretionary complex of the Neotethys Ocean in Northern Hungary. Földtani Közlöny 141(2):167–196 (in Hungarian with English abstract)Google Scholar
  48. Haas J, Pelikán P, Görög Á, Józsa S, Ozsvárt P (2013) Stratigraphy, facies and geodynamic setting of Jurassic formations in the Bükk Mountains, North Hungary: its relation with the other areas of the Neotethyan realm. Geol Mag 150:18–49CrossRefGoogle Scholar
  49. Haas J, Budai T, Csontos L, Fodor L, Konrád GY, Koroknai B (2014) Geology to the pre-Cenozoic basement of Hungary. Explanatory notes of the “Pre-Cenozoic geological map of Hungary” (1: 500 000). Geological and Geophysical Institute of Hungary, BudapestGoogle Scholar
  50. Haas J, Budai T, Dunkl I, Farics É, Józsa S, Kövér S, Götz AE, Piros O, Szeitz P (2017) The Budaörs-1 well revisited: contributions to the Triassic stratigraphy, sedimentology, and magmatism of the southwestern part of the Buda Hills. Cent Eur Geol.  https://doi.org/10.1556/24.60.2017.008 CrossRefGoogle Scholar
  51. Handy MR, Schmid SM, Bousque R, Kissling E, Bernoulli D (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102:121–158CrossRefGoogle Scholar
  52. Héja G, Kövér Sz, Csillag G, Németh A, Fodor L (2018) Evidences for pre-orogenic passive-margin extension in a Cretaceous fold-and-thrust belt on the basis of combined seismic and field data (western Transdanubian Range, Hungary). Int J Earth Sci (accepted) Google Scholar
  53. Ivan P (2002) Relics of the Meliata Ocean crust: geodynamic implications of mineralogical, petrological and geochemical proxies. Geol Carpath 53(4):245–256Google Scholar
  54. Janák M, Plašienka D, Frey M, Cosca M, Schmidt ST, Lupták B, Méres Š (2001) Cretaceous evolution of a metamorphic core complex, the Veporic unit, Western Carpathians (Slovakia): P–T conditions and in situ 40Ar/39Ar UV laser probe dating of metapelites. J Met Geol 19:197–216CrossRefGoogle Scholar
  55. Kázmér M, Kovács S (1985) Permian-Paleogene Paleogeography along the Eastern part of the Insubric-Periadriatic Lineament system: evidence for continental escape of the Bakony-Drauzug Unit. Acta Geol Hung 28:71–84Google Scholar
  56. Kiss G, Molnár F, Palinkaš LA, Kovács S, Hrvatović H (2012) Correlation of Triassic advanced rifting related Neotethyan submarine basaltic volcanism of the Darnó Unit (NE Hungary) with some Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid-rock interaction and geochemical characteristics. Int J Earth Sci 101(6):1503–1521CrossRefGoogle Scholar
  57. Klötzli U, Klötzli E, Günes Z, Košler J (2009) External accuracy of laser ablation U-Pb zircon dating: results from a test using five different reference zircons. Geostand Geoanal Res 33(1):5–15CrossRefGoogle Scholar
  58. Kohút M, Hofmann M, Havrila M, Linnenmann U (2017) Tracking an upper limit of the “Carnian Crisis” and/or Carnian stage in the Western Carpathians (Slovakia). Int J Earth Sci.  https://doi.org/10.1007/s00531-017-1491-8 CrossRefGoogle Scholar
  59. Kovács S (1988) Olistostromes and other deposits connected to subaqueous mass-gravity transport in the North Hungarian Paleo–Mesozoic. Acta Geol Hung 31(3–4):265–287Google Scholar
  60. Kovács S (2010) Type section of the Triassic Bódvalenke Limestone Formation (Rudabánya Hills, NE Hungary)—the northwesternmost occurrence of a Neotethyan deep water facies. Cent Eur Geol 53(1):121–133CrossRefGoogle Scholar
  61. Kovács S, Less GY, Piros O, Réti ZS, Róth L (1989) Triassic formations of the Aggtelek-Rudabánya Mts. (Northeastern Hungary). Acta Geol Hung 32:31–63Google Scholar
  62. Kovács S, Haas J, Ozsvárt P, Palinkaš LA, Kiss G, Molnár F, Józsa S, Kövér S (2010) Re-evaluation of the Mesozoic complexes of Darnó Hill (NE Hungary) and comparisons with Neotethyan accretionary complexes of the Dinarides and Hellenides—preliminary data. Cent Eur Geol 53(2–3):205–231CrossRefGoogle Scholar
  63. Kovács S, Sudar M, Gradinaru E, Gawlick H-J, Karamata S, Haas J et al (2011) Triassic evolution of the tectonostratigraphic units of the circum-pannonian region. Jahrbuch der Geologischen Bundesanstalt 151:201–228Google Scholar
  64. Kövér SZ, Fodor L, Judik K, Németh T, Balogh K, Kovács S (2009a) Deformation history and nappe stacking in Rudabánya Hills (Inner Western Carpathians) unravelled by structural geological, metamorphic petrological and geochronological studies. Geodin Acta 22:3–29CrossRefGoogle Scholar
  65. Kövér SZ, Haas J, Ozsvárt P, Görög Á, Götz AE, Józsa S (2009b) Lithofacies and age data of Jurassic foreslope and basin sediments of Rudabánya Hills (NE Hungary) and their tectonic interpretation. Geol Carpath 60(5):351–379CrossRefGoogle Scholar
  66. Kozur H (1991) The evolution of the Meliata-Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians. Palaegeogr Palaeoclimatol Palaeoecol 87(1–4):109–135CrossRefGoogle Scholar
  67. Kozur H, Mock R (1985) Erster Nachweis von Jura in der Meliata-Einheit der südlichen Westkarpaten. Geol Paläont Mitt Innsbruck 13(10):223–238Google Scholar
  68. Kozur H, Mock R (1997) New palaeographic and tectonic interpretations in the Slovakian Carpathians and their implications for correlation with the Easten Alps and other parts of the Western Tethys. Part II: inner Western Carpathians. Mineralia Slovaca 29(3):164–209Google Scholar
  69. Kozur H, Mock R, Ožvoldová L (1996) New biostratigraphic results in the Meliaticum in its type area around Meliata village (Slovakia) and their tectonic and paleogeographic significance. Geol Paläont Mitt Innsbruck 21:89–121Google Scholar
  70. Lačný A, Plašienka D, Vojtko R (2016) Structural evolution of the Turňa Unit constrained by fold and cleavage analyses and its consequences for the regional tectonic models of the Western Carpathians. Geol Carpath 67(2):177–193CrossRefGoogle Scholar
  71. Langone A, Zanetti A, Daczko NR, Piazolo S, Tiepolo M, Mazzucchelli M (2018) Zircon U-Pb dating of a lower crustal shear zone: a case study from the Northern sector of the Ivrea-Verbano Zone (Val Cannobina, Italy). Tectonics 37(1):322–342CrossRefGoogle Scholar
  72. Leško B, Varga I (1980) Alpine elements in the West Carpathian structure and their significance. Miner Slovaca 12(2):97–130Google Scholar
  73. Less GY (2000) Polyphase evolution of the structure of the Aggtelek–Rudabánya Mountains (NE Hungary), the southernmost element of the Inner Western Carpathians—a review. Slovak Geol Mag 6(2–3):260–268Google Scholar
  74. Less G, Mello J (eds) (2004) Geological map of the Gemer-Bükk area 1:100000. Geol Inst of Hungary, BudapestGoogle Scholar
  75. Less Gy, Grill J, Gyuricza Gy, Róth L, Szentpétery I (1988) Pre-quaternary geological map of the Aggtelek-Rudabánya Hills 1:25 000. Geological Institute of HungaryGoogle Scholar
  76. Lexa O, Schulmann K, Jezek J (2003) Cretaceous collision and indentation in the Western Carpathians: view based on structural analysis and numerical modelling. Tectonics 22 Art. No. 1066Google Scholar
  77. Ludwig KR (2003) Isoplot/Ex 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronol Center Spec Publ 4:70Google Scholar
  78. Maffione M, Thieulot C, van Hinsbergen DJJ, Morris A, Plumper O, Spakman W (2015) Dynamics of intra-oceanic subduction initiation. 1: Oceanic detachment fault inversion and the formation of forearc ophiolites. Geochem Geophys Geosyst.  https://doi.org/10.1002/2015GC005746 CrossRefGoogle Scholar
  79. Majoros P (2008) Az Aggtelek–Rudabányai-és Bükk–hegység jura koru vulkanitjainak cirkonmorfológiai vizsgálata. MSc thesis, Department of Mineralogy and Petrology, University of Miskolc (In Hungarian)Google Scholar
  80. Maluski H, Rajlich P, Matte P (1993) 40Ar/39Ar dating of the Inner Carpathians Variscan basement and Alpine mylonitic overprint. Tectonophysics 223:313–337CrossRefGoogle Scholar
  81. Máthé Z, Szakmány G (1990) The genetics (formation) of rhyolite occurring in the Rudabánya Mts. (Northeastern Hungary). Acta Miner-Petrogr Szeged 30:81–92Google Scholar
  82. McDonough WF, Sun SS (1995) Composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  83. Mello J (1979) Meliata sequence in the Turna tectonic window. Geol Práce 72:61–76Google Scholar
  84. Mello J, Elečko M, Pristaš J, Reichwalder P, Snopko D, Vass D, Vozárová A (1996) Geological map of the Slovenský Kras Mts., 1:50000. Geol. Survey of the Slovak Republic, BratislavaGoogle Scholar
  85. Mello J, Reichwalder P, Vozárová A (1998) Bôrka nappe: high-pressure relic from the subduction-accretion prism of the Meliata ocean (Inner Western Carpathians, Slovakia). Slovak Geol Mag 4:261–273Google Scholar
  86. Méres Š, Ivan P, Konečný P, Aubrecht R, Sýkora M, Plašienka D, Reichwalder P (2013) Two monazite ages from the accretionary prism mélange of the Meliata Ocean (Bôrka Nappe, Meliatic Superunit, Western Carpathians). In Broska I, Tomašových A (eds) Geological evolution of the Western Carpathians: new ideas in the field of inter-regional correlations. Abstract Book, Internat. Conference GEEWEC 2013, Smolenice, Slovak Republic, October 16–19, 2013. Geol. Inst. SAS, Bratislava, pp 58–59Google Scholar
  87. Mock R, Sykora M, Aubrecht R, Ozvoldová L, Kronome B, Reichwalder P, Jablonsky J (1998) Petrology and stratigraphy of the Meliaticum near the Meliata and Jaklovce Villages, Slovakia. Slovak Geol Mag 4:223–260Google Scholar
  88. Mundil R, Brack P, Meier M, Rieber H, Oberli F (1996) High resolution U-Pb dating of Middle Triassic volcaniclastics: time-scale calibration and verification of tuning parameters for carbonate sedimentation. Earth Planet Sci Lett 141:137–151CrossRefGoogle Scholar
  89. Németh K, Budai T (2009) Diatremes cut through the Triassic carbonate platforms in the Dolomites? Evidences from and around the Latemar, Northern Italy. Episodes 32(2):74–83Google Scholar
  90. Neubauer F, Liu X, Borojevic Sostaric S, Friedl G, Heberer B, Dong Y (2014) U-Pb zircon ages of Middle-Upper Triassic magmatism in Southern Alps and NW Dinarides: implications for the Southeast Mediterranean tectonics. Proceedings of the XXth Congress of the CBGA, vol 2. Tirana, Albania, Buletini I Shkencave GjeologjikeGoogle Scholar
  91. Ortner H (2017) Geometry of growth strata in wrench dominated transpression: 3D model of the Upper Jurassic Trattberg rise, Northern Calcareous Alps, Austria. Geophys Res Abstracts 19. EGU 2017 T9222Google Scholar
  92. Pálfy J, Parrish RR, David K, Vörös A (2003) Mid-Triassic integrated U–Pb geochronology and ammonoid biochronology from the Balaton Highland (Hungary). J Geol Soc London 160:271–284CrossRefGoogle Scholar
  93. Pamič J, Lovrič A (1980) Geological and isotope ages of the rift magmatien of the Mesozoic Wilson cycle in the Dinarides. Symposium de Géologie Régionale et Paléontologie—Institut de Géologie Régional et de Paléontologie, Faculté des Mines et de Geologie Universite de Belgrade, pp 251–274Google Scholar
  94. Pelikán P, Less GY, Kovács S, Pentelényi L, Sásdi L (2005) Geology of the Bükk Mountains. Explanatory Book to the Geological Map of the Bükk Mountains (1:50000). Geological Institute of Hungary, BudapestGoogle Scholar
  95. Plašienka D (1997) Cretaceous tectonochronology of the Central Western Carpathians (Slovakia). Geol Carpath 48:99–111Google Scholar
  96. Plašienka D (1998) Paleotectonic evolution of the Central Western Carpathians during the Jurassic and Cretaceous. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Geol Survey of Slovak Republic, Bratislava, pp 107–130Google Scholar
  97. Plašienka D, Grecula P, Putiš M, Hovorka D, Kováč M (1997) Evolution and structure of the Western Carpathians: an overview. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the western carpathians. Mineralica Slovaca Monograph, Bratislava, pp 1–24Google Scholar
  98. Pleničar M, Ogorelec B, Novak M (2009) The geology of Slovenia. Geoloski zavod Slovenije, LjubljanaGoogle Scholar
  99. Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaric orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183CrossRefGoogle Scholar
  100. Schmidt T, Blau J, Kázmér M (1991) Large-scale displacement of the Drauzug and the Transdanubian Mountains in early Alpine history: evidence from Permo-Mesozoic facies belts. Tectonophysics 200:213–232CrossRefGoogle Scholar
  101. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala B, Turbett MN, Whitehouse MJ (2008) Plešovice, a new natural reference material for U–Pb and Hf isotopic analysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  102. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  103. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196(1–2):17–33CrossRefGoogle Scholar
  104. Stüwe K, Schuster R (2010) Initiation of subduction in the Alps: Continent or ocean? Geology 38:175–178CrossRefGoogle Scholar
  105. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London Spec Pub 42(1):313–345CrossRefGoogle Scholar
  106. Sylvester PJ, Ghaderi M (1997) Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma mass spectrometry (ELA-ICPMS) using a synthetic silicate glass standard. Chem Geol 141:49–65CrossRefGoogle Scholar
  107. Szakmány Gy, Máthé Z, Réti Zs (1989) The position and petrochemistry of the rhyolite in the Rudabánya Mts. (NE Hungary). Acta Mineral Petrogr (30):81–92Google Scholar
  108. Velledits F (2006) Evolution of the Bükk Mountains (NE Hungary) during the Middle–Late Triassic asymmetric rifting of the Vardar-Meliata branch of the Neotethys Ocean. Int J Earth Sci 95(3):395–412CrossRefGoogle Scholar
  109. Vörös A (2010) Late Anisian Ammonoidea from Szár-hegy (Rudabánya Mts); a Dinaric-type fauna from North Hungary. Fragmenta Palaeontol Hung 28:1–20Google Scholar
  110. Wolff R, Dunkl I, Kiesselbach G, Wemmer K, Siegesmund S (2012) Thermochronological constraints on the multiphase exhumation history of the Ivrea-Verbano Zone of the Southern Alps. Tectonophysics 579:104–117CrossRefGoogle Scholar
  111. Wotzlaw JF, Brack P, Storck JC (2018) High-resolution stratigraphy and zircon U–Pb geochronology of the Middle Triassic Buchenstein Formation (Dolomites, northern Italy): precession-forcing of hemipelagic carbonate sedimentation and calibration of the Anisian–Ladinian boundary interval. J Geol Soc 175: 71–85CrossRefGoogle Scholar
  112. Zelenka T, Baksa CS, Balla Z, Földessy J, Földessy-Járányi K (1983) The role of the Darnó Line in the basement structure of Northeastern Hungary. Geologicky Zbornik Geol Carpath 34(1):53–69Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MTA-ELTE Geological, Geophysical and Space Science Research GroupBudapestHungary
  2. 2.MTA-ELTE Volcanology Research GroupBudapestHungary
  3. 3.Lithosphere Fluid Research Lab at Eötvös UniversityBudapestHungary
  4. 4.Department of Lithospheric ResearchUniversity ViennaViennaAustria
  5. 5.Institute of Mineralogy and GeologyUniversity of MiskolcMiskolcHungary

Personalised recommendations