International Journal of Earth Sciences

, Volume 107, Issue 8, pp 2819–2842 | Cite as

Plutons and domes: the consequences of anatectic magma extraction—example from the southeastern French Massif Central

  • A. VillarosEmail author
  • O. Laurent
  • S. Couzinié
  • J.-F. Moyen
  • M. Mintrone
Original Paper


Anatectic magmas form plutons or accumulate in the core of anatectic domes. Both scenarios have distinct implications on the behaviour of the continental crust during orogenic evolution from collision to collapse. Considering a stepwise extraction of melt, we simulate the evolution of anatectic melt and of solid residues produced in the crust from collision to collapse using thermodynamic modelling. We also simulate the effect of entrainment of source material (restite-unmixing and peritectic assemblage entrainment) on the compositional range of the resulting magmas. The results are then compared to the compositions of lower crustal xenoliths and of peraluminous granites in both plutons and anatectic dome in the southeastern French Massif Central (SE-FMC). From our calculations, we identify two type of anatectic melts (1) cool-and-wet produced at low-temperature (< 800 °C) which release fluids during crystallisation and (2) hot-and-dry produced at high-temperature (> 750 °C) which only release fluids at the end of crystallisation. When emplaced around 0.4 GPa, cold-and-wet melts are produced by muscovite-dehydration melting reactions; hot-and-dry are produced by biotite-dehydration melting. In the SE-FMC, the Velay dome is cored by the Velay granite, intruded by small bodies of Velay leucogranite and surrounded by plutons made of either two mica leucogranite (MPG) or cordierite-bearing granite (CPG). MPG and Velay leucogranite compositions are best reproduced by cool-and-wet magmas. CPG and Velay granite compositions are best reproduced by hot-and-dry magmas. Melt extraction after biotite dehydration melting leaves residues that are similar in composition to lower-crustal xenoliths. Magmas forming plutons migrate freely toward the upper crust forming plutons with distinct compositions. On the contrary, to form a dome, magmas are retained on the way up. The emplacement and accumulation of magma at deeper level enhances (or trigger) melting due to the addition of heat (from hot-and-dry) and fluids (from cool-and-wet). The accumulation of magma and the in situ melting increases melt fraction and has consequence to weaken the middle crust and leads to the formation of an anatectic dome. We suggest that magmas are retained due to lithological heterogeneities in the crust. In the case of the Velay dome, a large orthogneiss formation similar to the Velay orthogneiss formation may have played that role.


Crustal melting Magma extraction Anatectic dome Peraluminous granite Collapsing orogen French Massif Central 



AV acknowledges funding from LabEx VOLTAIRE (ANR-10-LABX-100-01) and the ANR program VARPEG (ANR-15-CE01-0001). JFM was supported by an INSU-PNP grant “Quantification de la durée d’un épisode de fusion partielle en contexte de désépaississement tardi-orogénique” (2016). The authors thank O. Vanderhaeghe and V. Gardien for discussions on the subject and the area; Bruna Carvalho and Roberto Weinberg for constructive comments that helped to improve this manuscript.

Supplementary material

531_2018_1630_MOESM1_ESM.xlsx (526 kb)
Supplementary material 1 (XLSX 526 KB)
531_2018_1630_MOESM2_ESM.pdf (497 kb)
Supplementary material 2 (PDF 496 KB)
531_2018_1630_MOESM3_ESM.pdf (459 kb)
Supplementary material 3 (PDF 458 KB)


  1. Acosta-Vigil A, London D, Morgan G, Dewers TA (2006) Dissolution of quartz, albite, and orthoclase in H2O-saturated haplogranitic melt at 800 °C and 200 MPa: diffusive transport properties of granitic melts at crustal anatectic conditions. J Petrol 47:231–254CrossRefGoogle Scholar
  2. Arzi AA (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44:173–184CrossRefGoogle Scholar
  3. Auzanneau E, Vielzeuf D, Schmidt MW (2006) Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol 152:125–148CrossRefGoogle Scholar
  4. Auzanneau E, Schmidt MW, Vielzeuf D, Connolly JAD (2010) Titanium in phengite: a geobarometer for high temperature eclogites. Contrib Mineral Petrol 159:1–24CrossRefGoogle Scholar
  5. Barbarin B (1996) Genesis of the two main types of peraluminous granitoids. Geology 24:295–298CrossRefGoogle Scholar
  6. Barbarin B (1999) A review of the relationships between granitoïd types, their origins and their geodynamic environments. Lithos 46:605–626CrossRefGoogle Scholar
  7. Barbey P, Marignac C, Montel JM, Macaudiere J, Gasquet D, Jabbori J (1999) Cordierite growth textures and the conditions of genesis and emplacement of crustal granitic magmas: the Velay granite complex (Massif Central, France). J Petrol 40:1425–1441CrossRefGoogle Scholar
  8. Barbey P, Villaros A, Marignac C, Montel J-M (2015) Multiphase melting, magma emplacement and P–T–time path in late-collisional context: the Velay example (Massif Central, France). Bull Soc Geol Fr 186:93–116CrossRefGoogle Scholar
  9. Bé Mézème E, Faure M, Cocherie A, Chen Y (2005) In situ chemical dating of tectonothermal events in the French Variscan Belt. Terra Nova 17:420–426CrossRefGoogle Scholar
  10. Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742CrossRefGoogle Scholar
  11. Beaumont C, Jamieson RA, Nguyen MH, Medvedev S (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J Geophys Res Solid Earth 109(B6):B06406CrossRefGoogle Scholar
  12. Bons PD, Arnold J, Elburg MA, Kalda J, Soesoo A, van Milligen BP (2004) Melt extraction and accumulation from partially molten rocks. Lithos 78:25–42CrossRefGoogle Scholar
  13. Bouilhol P, Delor C, Vauchez A (2006) Relationships between lower and upper crust tectonic during doming: the mylonitic southern edge of the Velay metamorphic core complex (Cévennes-French Massif Central). Geodin Act 4:137–153CrossRefGoogle Scholar
  14. Brown M (2006) Melt extraction from the lower continental crust of orogens: The field evidence. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 332–384Google Scholar
  15. Brown M, Korhonen FJ, Siddoway CS (2011) Organizing melt flow through the crust. Elements 7:261–266CrossRefGoogle Scholar
  16. Bruguier O, Becq-Giraudon JF, Champenois M, Deloule E, Ludden J, Mangin D (2003) Application of in situ zircon geochronology and accessory phase chemistry to constraining basin development during post-collisional extension: a case study from the French Massif Central. Chem Geol 201:319–336CrossRefGoogle Scholar
  17. Burg JP, Vanderhaeghe O (1993) Structures and way-up criteria in migmatites, with application to the Velay dome (French Massif Central). J Struct Geol 15:1293–1301CrossRefGoogle Scholar
  18. Caron C (1994) Pb–Zn mineralisations associated lower Palaeozoic in southern Europe. Pb-Pb isotopes in Iglesiente (SW Sardaigne) and the Cevennes and evolution of the host using U-Pb, 40Ar/39Ar. Geochronology, Ph.D. Thesis. Université de Montpellier, Montpellier (in French) Google Scholar
  19. Champallier R, Bystricky M, Arbaret L (2008) Experimental investigation of magma rheology at 300 MPa: from pure hydrous melt to 76 vol.% of crystals. Earth Planet Sci Lett 267:571–583CrossRefGoogle Scholar
  20. Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138CrossRefGoogle Scholar
  21. Chelle-Michou C, Laurent O, Moyen J-F, Block S, Paquette J-L, Couzinié S, Gardien V, Vanderhaeghe O, Villaros A, Zeh A (2017) Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: formation of the West European crust in a nutshell. Gondwana Res 46:170–190CrossRefGoogle Scholar
  22. Clemens JD (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci Rev 61:1–18CrossRefGoogle Scholar
  23. Clemens JD (2006) Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 297–331Google Scholar
  24. Clemens JD, Stevens G (2016) Melt segregation and magma interactions during crustal melting: Breaking out of the matrix. Earth Sci Rev 160:333–349CrossRefGoogle Scholar
  25. Clemens JD, Watkins JM (2001) The fluid regime of high temperature metamorphism during granitoid magma genesis. Contrib Mineral Petrol 140:600–606CrossRefGoogle Scholar
  26. Clemens JD, Droop GTR, Stevens G (1997) High-grade metamorphism, dehydrations and crustal melting: a reinvestigation based on new experiments in the silica-saturated portion of the system KAlO2–MgO–SiO2–H2O–CO2 at P < 1.5 GPa. Contrib Mineral Petrol 129:308–325CrossRefGoogle Scholar
  27. Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20:683–696CrossRefGoogle Scholar
  28. Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436CrossRefGoogle Scholar
  29. Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modelling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541CrossRefGoogle Scholar
  30. Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst 10:Q10014. CrossRefGoogle Scholar
  31. Couzinié S (2017) Evolution of the continental crust and significance of the zircon record, a case study from the French Massif Central. Ph.D. thesis. St EtienneGoogle Scholar
  32. Couzinié S, Moyen J-F, Villaros A, Paquette J-L, Scarrow JH, Marignac C (2014) Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay complex (Massif Central, France). J Geosci 59:1–18Google Scholar
  33. Couzinié S, Laurent O, Moyen JF, Zeh A, Bouilhol P, Villaros A (2016) Post-collisional magmatism: crustal growth not identified by zircon Hf-O isotopes. Earth Planet Sci Lett 456:182–195CrossRefGoogle Scholar
  34. Couzinié S, Laurent O, Poujol M, Mintrone M, Chelle-Michou C, Moyen J-F, Bouilhol P, Vezinet A, Marko L (2017) Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): implications for the crustal evolution of the north Gondwana margin. Lithos 286:16–34CrossRefGoogle Scholar
  35. de Saint Blanquat M, Horsman E, Habert G, Morgan S, Vanderhaeghe O, Law R, Tikoff B (2011) Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500:20–33CrossRefGoogle Scholar
  36. Debon F, Le Fort P (1983) A chemical–mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinb Earth Sci 73:135–149CrossRefGoogle Scholar
  37. Depine GV, Andronicos CL, Phipps-Morgan J (2008) Near-isothermal conditions in the middle and lower crust induced by melt migration. Nature 452:80–83CrossRefGoogle Scholar
  38. Didier A, Bosse V, Boulvais P, Bouloton J, Paquette J-L, Montel J-M, Devidal J-L (2013) Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib Mineral Petrol 165:1051–1072CrossRefGoogle Scholar
  39. Dostal J, Dupuy C, Leyreloup A (1980) Geochemistry and petrology of meta-igneous granulitic xenoliths in Neogene volcanic rocks of the Massif Central, France—implications for the lower crust. Earth Planet Sci Lett 50:31–40CrossRefGoogle Scholar
  40. Downes H, Duthou J-L (1988) Isotopic and trace-element arguments for the lower-crustal origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France). Chem Geol 68:291–308CrossRefGoogle Scholar
  41. Downes H, Leyreloup AF (1986) Granulitic xenoliths from the French Massif Central—petrology, Sr and Nd isotope systematics and model age estimates, Special Publications, vol 24. Geological Society, London, pp 319–330Google Scholar
  42. Downes H, Dupuy C, Leyreloup A (1990) Crustal evolution of the Hercynian belt of Western Europe: evidence from lower-crustal granulitic xenoliths (French Massif Central). Chem Geol 83:209–231CrossRefGoogle Scholar
  43. Dupuy C, Leyreloup A, Vernieres J (1979) The lower continental crust of the Massif Central (Bournac, France) with special references to REE, U and Th composition, evolution, heat-flow production. Phys Chem Earth 11:401–415CrossRefGoogle Scholar
  44. Farina F, Stevens G, Villaros A (2012) Multi-batch, incremental assembly of a dynamic magma chamber: the case of the Peninsula pluton granite (Cape Granite Suite, South Africa. Mineral Petrol 106:193–216CrossRefGoogle Scholar
  45. Faure M, Lardeaux J-M, Ledru P (2009) A review of pre-Permian geology of the Variscan French Massif Central. C R Geosci 341:202–213CrossRefGoogle Scholar
  46. Gao P. Zheng Y, Zhao Z (2016) Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis. Lithos 266–267:133–157CrossRefGoogle Scholar
  47. Garcia-Arias M, Stevens G (2017a) Phase equilibrium modelling of granite magma petrogenesis: A. An evaluation of the magma compositions produced by crystal entrainment in the source. Lithos 277:131–153CrossRefGoogle Scholar
  48. Garcia-Arias M, Stevens G (2017b) Phase equilibrium modelling of granite magma petrogenesis: B. An evaluation of the magma compositions that result from fractional crystallization. Lithos 277:109–130CrossRefGoogle Scholar
  49. Gardien V, Thompson AB, Grujic D, Ulmer P (1995) Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. J Geophys Res Solid Earth 100:15581–15591CrossRefGoogle Scholar
  50. Gardien V, Lardeaux J-M, Ledru P, Allemand P, Guillot S (1997) Metamorphism during late orogenic extension; insights from the French Variscan belt. Bull Soc Geol Fr 168:271–286Google Scholar
  51. Gardien V, Thompson AB, Ulmer P (2000) Melting of biotite + plagioclase + quartz gneisses: the role of H2O in the stability of amphibole. J Petrol 41:651–666CrossRefGoogle Scholar
  52. Gerya TV, Perchuk LL, Maresch WV, Willner AP (2004) Inherent gravitational instability of hot continental crust: implications for doming and diapirism in granulite facies terrains. Spec Papers Geol Soc Am 380:97–116Google Scholar
  53. Gerya TV, Perchuk LL, Burg JP (2008) Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust–mantle associations in collision belts. Lithos 103:236–256CrossRefGoogle Scholar
  54. Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11CrossRefGoogle Scholar
  55. Guernina S, Sawyer EW (2003) Large scale melt-depletion in granulite terranes: an example from the Archean Ashuanipi Subprovince of Quebec. J Metamorph Geol 21:181–201CrossRefGoogle Scholar
  56. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for of petrological interest. J Metamorph Geol 16:309–343CrossRefGoogle Scholar
  57. Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. In: Wyllie A, El Goresy WvE, Hahn T (eds). Springer, Heidelberg, p 335CrossRefGoogle Scholar
  58. Johnson TE, White R, Powell R (2008) Partial melting of metagreywacke: a calculated mineral equilibria study. J Metamorph Geol 26:837–853CrossRefGoogle Scholar
  59. Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212CrossRefGoogle Scholar
  60. Korhonen FJ, Saito S, Brown M, Siddoway CS (2009) Modelling multiple melt loss events in the evolution of an active continental margin. Lithos 116:230–248CrossRefGoogle Scholar
  61. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329CrossRefGoogle Scholar
  62. Laporte D, Watson EB (1995) Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity. Chem Geol 124:161–184CrossRefGoogle Scholar
  63. Laporte D, Rapaille C, Provost A, Hutton DHW, Stephens WE (1997) Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protoliths. In: Bouchez JL (ed) Granite: from segregation of melt to emplacement fabrics. Springer, Dordrecht, pp 31–54CrossRefGoogle Scholar
  64. Lardeaux JM, Ledru P, Daniel I, Duchene S (2001) The Variscan French Massif Central—a new addition to the ultra-high pressure metamorphic ‘club’: exhumation processes and geodynamic consequences. Tectonophysics 332:143–167CrossRefGoogle Scholar
  65. Lardeaux JM, Schulmann K, Faure M, Janoucek V, Lexa O, Skrzypek E, Edel JB, Stipska P (2014) The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. Geolog Soc London Spec Publ 405:7–44CrossRefGoogle Scholar
  66. Laumonier M, Arbaret L, Burgisser A, Champallier R (2011) Porosity redistribution enhanced by strain localization in crystal-rich magmas. Geology 39:715–718CrossRefGoogle Scholar
  67. Laurent O, Couzinié S, Zeh A, Vanderhaeghe O, Moyen J-F, Villaros A, Gardien V (2017) Protracted, coeval crust- and mantle melting during Variscan late-orogenic evolution: zircon U–Pb dating in the eastern French Massif Central. Int J Earth Sci 106:421–451CrossRefGoogle Scholar
  68. Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol 99:226–237CrossRefGoogle Scholar
  69. Ledru P, Courrioux G, Dallain C, Lardeaux J-M, Montel J-M, Vanderhaeghe O, Vitel G (2001) The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics 342:207–237CrossRefGoogle Scholar
  70. Lejeune A-M, Richet P (1995) Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J Geophys Res Solid Earth 100:4215–4229CrossRefGoogle Scholar
  71. Leyreloup A (1973) The deep Velay crust after enclaves extruded by neogene volcanoes: thermometamorphism and lithology: granites and Charnockites (French Massif Central). Ph.D. dissertation. Université de Nantes, FranceGoogle Scholar
  72. Leyreloup A (1974) The catazonales enclaves extruded by Neogene eruptions un France: Nature of the lower crust. Contrib Mineral Petrol 46:17–27CrossRefGoogle Scholar
  73. Leyreloup A, Dupuy C, Andriambololona R (1977) Catazonal xenoliths in French Neogene volcanic rocks: constitution of the lower crust. Contrib Mineral Petrol 62:283–300CrossRefGoogle Scholar
  74. Malavieille J (1993) Late orogenic extension in mountain belts: insights from the Basin and Range and the late Paleozoic Variscan belt. Tectonics 12:1115–1130CrossRefGoogle Scholar
  75. Malavieille J, Guihot P, Costa S, Lardeaux JM, Gardien V (1990) Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous basin. Tectonophysics 177:139–154CrossRefGoogle Scholar
  76. Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374CrossRefGoogle Scholar
  77. Mayne MJ, Moyen JF, Stevens G, Kaislaniemi L (2016) Rcrust: a tool for calculating path-dependent open system processes and application to melt loss. J Metamorph Geol 34:663–682CrossRefGoogle Scholar
  78. Melleton J, Cocherie A, Faure M, Rossi P (2010) Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U–Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res 17:13–25CrossRefGoogle Scholar
  79. Melo MG, Stevens G, Lana C, Pedrosa-Soares AC, Frei D, Alkmim FF, Alkmin LA (2017) Two cryptic anatectic events within a syn-collisional granitoïd from the Araçuaí orogen (southeastern Brazil): evidence from the polymetamorphic Carlos Chagas batholith. Lithos 277:51–71CrossRefGoogle Scholar
  80. Mintrone M (2015) Constraining the duration of metamorphic events by modelling pf phase equilibrium and diffusion in garnet—example from the French Massif Central, France. M.Sc. Thesis. Université de Clermont Auvergne, Clermont-FerrandGoogle Scholar
  81. Montel JM, Abdelghaffar R (1993) Major petrographic and geochemical characteristics of the late-migmatitic Velay granites (Massif Central). Géol Fr 1:15–28Google Scholar
  82. Montel J-M, Vielzeuf D (1997) Partial melting of metagreywacke—2: compositions of minerals and melts. Contrib Mineral Petrol 128:176–196CrossRefGoogle Scholar
  83. Montel JM, Marignac C, Barbey P, Pichavant M (1992) Thermobarometry and granite genesis: the Hercynian low-P, high-T Velay anatectic dome (French Massif Central). J Metamorph Geol 10:1–15CrossRefGoogle Scholar
  84. Mougeot R, Respaut JP, Ledru P, Marignac C (1997) U–Pb chronology on accessory minerals of the Velay anatectic dome (French Massif Central). Eur J Mineral 9:141–156CrossRefGoogle Scholar
  85. Moyen J-F, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, Villaros A, Gardien V (2017) Collision vs. subduction-related magmatism: two contrasting sites of granite formation and implications for crustal growth. Lithos 277:154–177CrossRefGoogle Scholar
  86. Newton RC, Haselton HT (1981) Thermodynamics of the garnet–plagioclase–Al2SiO5–quartz geobarometer. In: Newton RC, Navrotsky A, Wood BJ (eds) Thrmodynamics of minerals and melts. Springer, New York, pp 131–147CrossRefGoogle Scholar
  87. Poujol M, Pitra P, Van Den Driessche J, Tartese R, Ruffet G, Paquette J-L, Poilvet J-C (2017) Two-stage partial melting during the Variscan extensional tectonics. Int J Earth Sci 106:477–500CrossRefGoogle Scholar
  88. Powell R, Holland T (1999) Relating formulations of the thermodynamics of mineral solid solutions: activity modelling of pyroxenes, amphiboles, and micas. Am Mineral 84:1–14CrossRefGoogle Scholar
  89. Rabinowicz M, Vigneresse J-L (2004) Melt segregation under compaction and shear channeling: application to granitic magma segregation in a continental Crust. J Geophys Res B Solid Earth 109:B04407CrossRefGoogle Scholar
  90. Rey P, Vanderhaeghe O, Teyssier C (2001) Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics 342:435–449CrossRefGoogle Scholar
  91. Rey PF, Teyssier C, Whitney DL (2009) Extension rates, crustal melting, and core complex dynamics. Geology 37:391–394CrossRefGoogle Scholar
  92. Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28CrossRefGoogle Scholar
  93. Rossi P, Cocherie A, Fanning CM, Deloule É (2006) Variscan to eo-Alpine events recorded in European lower-crust zircons sampled from the French Massif Central and Corsica, France. Lithos 87:235–260CrossRefGoogle Scholar
  94. Sabatier H (1991) Vaugnerites: special lamprophyre-derived mafic enclaves in some Hercynian granites from Western and Central Europe. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Developments in petrology. Elsevier, Amsterdam, pp 63–81Google Scholar
  95. Sandiford M, Foden J, Zhou S, Turner S (1992) Granite genesis and the mechanics of convergent orogenic belts with application to the southern Adelaide Fold Belt. Geol Soc Am Spec Pap 272:83–94Google Scholar
  96. Sanislav IV, Bell TH (2011) The inter-relationship between long-lived metamorphism, pluton emplacement and changes in the direction of bulk shortening during orogenesis. J Metamorph Geol 29:513–536CrossRefGoogle Scholar
  97. Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234CrossRefGoogle Scholar
  98. Scaillet B, Pichavant M, Roux J (1995) Experimental crystallization of leucogranite magmasJ. Petrol 36:663–705CrossRefGoogle Scholar
  99. Schwindinger M, Weinberg RF (2017) A felsic MASH zone of crustal magmas—feedback between granite magma intrusion and in situ crustal anatexis. Lithos 284:109–121CrossRefGoogle Scholar
  100. Shaw DM (2006) Trace elements in magmas: a theoretical treatment. Cambridge University Press, CambridgeGoogle Scholar
  101. Solar GS, Brown M (2001) Petrogenesis of migmatites in Maine, USA: possible source of peraluminous leucogranite in plutons? J Petrol 42:789–823CrossRefGoogle Scholar
  102. Stampfli GM, Hochard C, Verard C, Wilhem C, von-Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19CrossRefGoogle Scholar
  103. Stevens G, van Reenen D (1992) Partial melting and the origin of metapelitic granulites in the Southern Marginal Zone of the Limpopo Belt, South Africa. Precamb Res 55:303–319CrossRefGoogle Scholar
  104. Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite-facies anatexis: experimental data from primitive metasedimentary protoliths. Contrib Mineral Petrol 128:352–370CrossRefGoogle Scholar
  105. Stevens G, Villaros A, Moyen J-F (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35:9–12CrossRefGoogle Scholar
  106. Tajcmanovà L, Connolly JAD, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. J Metamorph Geol 27:153–165CrossRefGoogle Scholar
  107. Taylor J, Stevens G (2010) Selective entrainment of peritectic garnet into S-type granitic magmas: evidence from Archaean mid-crustal anatectites. Lithos 120:277–292CrossRefGoogle Scholar
  108. Teyssier C, Whitney DL (2002) Gneiss domes and orogeny. Geology 30:1139–1142CrossRefGoogle Scholar
  109. Teyssier C, Ferré EC, Whitney DL, Norlander B, Vanderhaeghe O, Parkinson D (2005) Flow of partially molten crust and origin of detachments during collapse of the Cordilleran orogen. Geol Soc Lond Spec Publ 245:39–64CrossRefGoogle Scholar
  110. Tobschall HJ (1971) Zur Genese der Migmatite des Beaume-Tales (Mittlere Cevennen, Dep. Ardeche). Contrib Mineral Petrol 32:93–111CrossRefGoogle Scholar
  111. van der Molen I, Paterson MS (1979) Experimental deformation of partially melted granite. Contrib Mineral Petrol 70:299–318CrossRefGoogle Scholar
  112. Vanderhaeghe O (2009) Migmatites, granites and orogeny: flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477:119–134CrossRefGoogle Scholar
  113. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276CrossRefGoogle Scholar
  114. Vielzeuf D, Montel J-M (1994) Partial melting of Metagreywackes. 1: Fluid-absent experiments and phase-relationships. Contrib Mineral Petrol 117:375–393CrossRefGoogle Scholar
  115. Villaros A, Stevens G, Moyen J-F, Buick IS (2009) The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. Contrib Mineral Petrol 158:543–561CrossRefGoogle Scholar
  116. Villaseca C, Barbero L, Herreros V (1998) A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Earth Environ Sci Trans R Soc Edinburgh 89:113–119CrossRefGoogle Scholar
  117. Ward R, Stevens G, Kisters A (2008) Fluid and deformation induced partial melting and melt volumes in low-temperature granulite-facies metasediments, Damara Belt, Namibia. Lithos 105:253–271CrossRefGoogle Scholar
  118. Weinberg RF, Hasalová P (2015) Water-fluxed melting of the continental crust: A review. Lithos 212:158–188CrossRefGoogle Scholar
  119. Weisbrod A (1970) Petrology of the metamorphic socle of the central Cevennes (French Massif central). Sedimentalogical reconstruction and thermodynamic approach of metamorphism, vol 4—unpubl. thesis. Université de Nancy, Nancy (in French) Google Scholar
  120. White RW, Powell R (2002) Melt loss and the preservation of granulite facies mineral assemblages. J Metamorph Geol 20:621–632Google Scholar
  121. White RW, Powell R (2010) Retrograde melt–residue interaction and the formation of near-anhydrous leucosomes in migmatites. J Metamorph Geol 28:579–597CrossRefGoogle Scholar
  122. White RW, Powell R, Holland TJB, Worley BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Metamorph Geol 18:497–511CrossRefGoogle Scholar
  123. White RW, Powell R, Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). J Metamorph Geol 19:139–153CrossRefGoogle Scholar
  124. White RW, Powell R, Halpin JA (2004) Spatially-focussed melt formation in aluminous metapelites from Broken Hill, Australia. J Metamorph Geol 22:825–845CrossRefGoogle Scholar
  125. White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527CrossRefGoogle Scholar
  126. White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286CrossRefGoogle Scholar
  127. Whitney DL, Teyssier C, Vanderhaeghe O (2004) Gneiss domes and crustal flow. Geol Soc Am Spec Pap 380:15–33Google Scholar
  128. Williamson BJ, Downes H, Thirlwall MF (1992) The relationship between crustal magmatic underplating and granite genesis—an example from the Velay Granite Complex, Massif-Central, France. Trans R Soc Edinb Earth Sci 83:235–245CrossRefGoogle Scholar
  129. Williamson BJ, Shaw A, Downes H, Thirlwall MF (1996) Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France. Chem Geol 127:25–42CrossRefGoogle Scholar
  130. Williamson BJ, Downes H, Thirlwall MF, Beard A (1997) Geochemical constraints on restite composition and unmixing in the Velay anatectic granite, French Massif Central. Lithos 40:295–319CrossRefGoogle Scholar
  131. Yakymchuk C, Brown M (2014) Behaviour of zircon and monazite during crustal melting. J Geol Soc 171:465–479CrossRefGoogle Scholar
  132. Yakymchuk C, Brown M, Clark C, Korhonen FJ, Piccoli PM, Siddoway CS, Taylor RJM, Vervoort JD (2015) Decoding polyphase migmatites using geochronology and phase equilibria modelling. J Metamorph Geol 33:203–230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université d’Orléans, ISTO, UMR 7327OrléansFrance
  2. 2.CNRS, ISTO, UMR 7327OrléansFrance
  3. 3.BRGM, ISTO, UMR 7327OrléansFrance
  4. 4.Institute for geochemistry and Petrology, ETH ZurichZurichSwitzerland
  5. 5.Department of Earth SciencesUniversity of StellenboschMatielandSouth Africa
  6. 6.Université de Lyon, Laboratoire Magmas et Volcans, UJM-UCA-CNRS-IRDSaint ÉtienneFrance

Personalised recommendations