International Journal of Earth Sciences

, Volume 107, Issue 7, pp 2317–2336 | Cite as

Multiple crust reworking in the French Armorican Variscan belt: implication for the genesis of uranium-fertile leucogranites

  • C. BallouardEmail author
  • M. Poujol
  • A. Zeh
Original Paper


Muscovite peraluminous granites (MPGs) form by partial melting of the continental crust and can be related to metalliferous deposits such as tin, tungsten, and uranium (U). Metal enrichment in MPGs commonly results from fractional crystallization, but the metal contents of the source play a major role for their fertility. Between ca. 320 and 300 Ma (Late Carboniferous), the French Armorican Variscan belt was intruded by numerous U-fertile MPGs that contain inherited zircon grains with a wide range of ages from Archean-to-Carboniferous. U–Pb and Hf isotopic data of zircon grains from Brioverian-to-Carboniferous sediments, Cambrian-to-Early Carboniferous granitoids, and Late Carboniferous MPGs indicate that the crust of the Armorican Massif is made up by detritus mainly derived from the West African craton (3500–1600 Ma; TDM = 3.8–2.3 Ga), Grenvillian belt (1200–900 Ma; TDM = 2.7–1.2 Ga), and Avalonian–Cadomian belt (800–550 Ma; TDM = 2.5–0.8 Ga) and that the crust was affected by magmatic events at 510–470 Ma (TDM = 1.6–0.6 Ga), 410–330 Ma (TDM = 1.6–1 Ga), and 320–300 Ma. Furthermore, they reveal that the Late Carboniferous MPGs were mainly formed by partial melting of Brioverian sediments with Cambro–Ordovician and Devonian–Carboniferous granitoids, which are all genetically linked with each other and characterized by Th/U < 4. The new data suggest that the U-fertile MPGs result from multiple reworking of U-rich Brioverian sediments, deposited ca. 550 Ma ago on the northern margin of Gondwana, and partially molten during several Paleozoic events, causing a successive increase in U content in the middle-upper crust.


Peraluminous granites Zircon U–Pb dating Hf–Nd isotope analyses Variscan orogeny Uranium metallogenesis 



This work was supported by the 2012–2013 NEED-CNRS (AREVA-CEA) and 2015-CESSUR-INSU (CNRS) grants attributed to M. Poujol. We are very grateful to M.P. Dabard as well M. Jolivet, R. Tartèse and P. Bessin who helped for the sampling. We also want to thanks Y. Lepagnot and D. Vilbert (Geosciences Rennes) for crushing the samples and realizing whole-rock radiogenic isotope analyses (Sm–Nd and Sr), respectively. Comments from C. Villaseca and A.S. André-Mayer significantly improved the quality of the manuscript. Finally, this study is dedicated to the memory of M.P. Dabard who left us too early.

Supplementary material

531_2018_1600_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 KB)
531_2018_1600_MOESM2_ESM.xlsx (25 kb)
Supplementary material 2 (XLSX 25 KB)
531_2018_1600_MOESM3_ESM.xlsx (11 kb)
Supplementary material 3 (XLSX 10 KB)
531_2018_1600_MOESM4_ESM.docx (23 kb)
Supplementary material 4 (DOCX 22 KB)
531_2018_1600_MOESM5_ESM.xlsx (384 kb)
Supplementary material 5 (XLSX 383 KB)
531_2018_1600_MOESM6_ESM.xlsx (163 kb)
Supplementary material 6 (XLSX 162 KB)
531_2018_1600_MOESM7_ESM.docx (444 kb)
Supplementary material 7 (DOCX 444 KB)


  1. Andreoli MAG, Hart RJ, Ashwal LD, Coetzee H (2006) Correlations between U, Th Content and Metamorphic Grade in the Western Namaqualand Belt, South Africa, with implications for radioactive heating of the crust. J Petrol 47:1095–1118Google Scholar
  2. Arenas R, Sánchez Martínez S, Díez Fernández R, Gerdes A, Abati J, Fernández-Suárez J, Andonaegui P, González Cuadra P, López Carmona A, Albert R, Manuel Fuenlabrada J, Rubio Pascual FJ (2016) Allochthonous terranes involved in the Variscan suture of NW Iberia: a review of their origin and tectonothermal evolution. Earth-Sci Rev 161:140–178Google Scholar
  3. Augier R, Choulet F, Faure M, Turrillot P (2015) A turning-point in the evolution of the Variscan orogen: the ca. 325 Ma regional partial-melting event of the coastal South Armorican domain (South Brittany and Vendée, France). Bull Société Géologique Fr 186:63–91Google Scholar
  4. Bailie R, Armstrong R, Reid D (2007) The Bushmanland Group supracrustal succession, Aggeneys, Bushmanland, South Africa: Provenance, age of deposition and metamorphism. South Afr J Geol 110:59–86Google Scholar
  5. Ballèvre M (2016) Une histoire géologique du Massif armoricain. Géochronique 140Google Scholar
  6. Ballèvre M, Le Goff E, Hébert R (2001) The tectonothermal evolution of the Cadomian belt of northern Brittany, France: a Neoproterozoic volcanic arc. Tectonophysics 331:19–43Google Scholar
  7. Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Geosci 341:174–201Google Scholar
  8. Ballèvre M, Fourcade S, Capdevila R, Peucat JJ, Cocherie A, Fanning CM (2012) Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): Implications for the breakup of Gondwana. Gondwana Res 21:1019–1036Google Scholar
  9. Ballèvre M, Bosse V, Dabard MP, Ducassou C, Fourcade S, Paquette JL, Peucat JJ, Pitra P (2013) Histoire géologique du Massif armoricain: actualité de la recherche. Bulletin de la Société géologique et minéralogique de Bretagne 500:5–96Google Scholar
  10. Ballèvre M, Martínez Catalán JR, López-Carmona A, Pitra P, Abati J, Díez Fernández R, Ducassou C, Arenas R, Bosse V, Castiñeiras P, Fernández-Suárez J, Gómez Barreiro J, Paquette JL, Peucat JJ, Poujol M, Ruffet G, Sánchez Martínez S (2014) Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French–Spanish project. Geol Soc London Spec Publ 405:77–113Google Scholar
  11. Ballouard C (2016) Origine, évolution et exhumation des leucogranites peralumineux de la chaîne hercynienne armoricaine: implication sur la métallogénie de l’uranium. Dissertation, Université de Rennes 1Google Scholar
  12. Ballouard C, Boulvais P, Poujol M, Gapais D, Yamato P, Tartèse R, Cuney M (2015a) Tectonic record, magmatic history and hydrothermal alteration in the Hercynian Guérande leucogranite, Armorican Massif, France. Lithos 220–223:1–22Google Scholar
  13. Ballouard C, Poujol M, Jolivet M, Boulvais P, Tartese R, Dubois C, Hallot E, Dabard MP, Ruffet G (2015b) Geochronological and thermochronological constraints on the Carboniferous magmatism from the Armorican Massif: from the source to the exhumation. The Variscan Belt: Correlations and Plate Dynamics, Variscan Conference 2015, Rennes (France), 9–11 June 2015Google Scholar
  14. Ballouard C, Poujol M, Boulvais P, Mercadier J, Tartèse R, Venneman T, Deloule E, Jolivet M, Kéré I, Cathelineau M, Cuney M (2017a) Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: the uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France). Ore Geol Rev 80:309–331Google Scholar
  15. Ballouard C, Poujol M, Boulvais P, Zeh A (2017b) Crustal recycling and juvenile addition during lithospheric wrenching: the Pontivy-Rostrenen magmatic complex, Armorican Massif (France), Variscan belt. Gondwana Res 49:222–247Google Scholar
  16. Ballouard C, Poujol M, Mercadier J, Deloule E, Boulvais P, Cuney M, Cathelineau M (in press) Uranium metallogenesis in the peraluminous leucogranites from the Pontivy-Rostrenen magmatic complex (French Armorican Variscan Belt): the result of long term oxidized hydrothermal alteration during strike-slip deformation. Miner deposita. Google Scholar
  17. Bankwitz P, Bankwitz E, Kramer W, Pin C (1992) Early Paleozoic bimodal volcanism in the Vesser area, Thuringian Forest, eastern germany. Z Geol Paläontol I 1113–1132Google Scholar
  18. Barbarin B (1996) Genesis of the two main types of peraluminous granitoids. Geology 24:295–298Google Scholar
  19. Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626Google Scholar
  20. Béchennec F, Thiéblemont D (2013) Baud 384., Carte géologique de France 1:50,000. BRGMGoogle Scholar
  21. Béchennec F, Guennoc P, Guerrot C, Lebret P, Thiéblemont D (1996) Concarneau 382, Carte Géologique de France 1:50,000. BRGMGoogle Scholar
  22. Béchennec F, Hallégouët B, Thiéblemont D (1999) Quimper 346, Carte Géologique de France 1:50,000. BRGMGoogle Scholar
  23. Béchennec F, Hallégouët B, Thiéblemont D (2001) Rosporden 347, Carte Géologique de France 1:50,000. BRGMGoogle Scholar
  24. Bernard-Griffiths J, Peucat JJ, Sheppard S, Vidal P (1985) Petrogenesis of Hercynian leucogranites from the southern Armorican Massif: contribution of REE and isotopic (Sr, Nd, Pb and O) geochemical data to the study of source rock characteristics and ages. Earth Planet Sci Lett 74:235–250Google Scholar
  25. Bernard-Griffiths J, Carpenter MSN, Peucat JJ, Jahn BM (1986) Geochemical and isotopic characteristics of blueschist facies rocks from the Île de Groix, Armorican Massif (northwest France). Lithos 19:235–253Google Scholar
  26. Bosse V, Féraud G, Ballèvre M, Peucat JJ, Corsini M (2005) Rb–Sr and 40Ar/39Ar ages in blueschists from the Ile de Groix (Armorican Massif, France): implications for closure mechanisms in isotopic systems. Chem Geol 220:21–45Google Scholar
  27. Bouton P, Thiéblemont D, Gouin J, Moussavou M (2009) Notice explicative de la Carte géologique de la République du Gabon à 1: 200 000, Feuille Franceville – Boumango, Editions DGMG—Ministères des Mines, du Pétrole, des Hydrocarbures. LibrevilleGoogle Scholar
  28. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57Google Scholar
  29. Brun JP, Guennoc P, Truffert C, Vairon J (2001) Cadomian tectonics in northern Brittany: a contribution of 3-D crustal-scale modelling. Tectonophysics 331:229–246Google Scholar
  30. Capdevila R (2010) Les granites varisques du Massif Armoricain. Bulletin de la Société Géologique et Minéralogique de Bretagne 7: pp 1–52Google Scholar
  31. Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand Newsl 25:187–198Google Scholar
  32. Caroff M, Labry C, Le Gall B, Authemayou C, Grosjean DB, Guillong M (2015) Petrogenesis of late-Variscan high-K alkali-calcic granitoids and calc-alkalic lamprophyres: The Aber-Ildut/North-Ouessant complex, Armorican Massif, France. Lithos 238:140–155Google Scholar
  33. Carric G, Chantraine J, Dadet P, Flageollet JC, Sagon JP, Talbot H (1980) Montcontour 279. Carte géologique de France 1:50,000. BRGMGoogle Scholar
  34. Castro A, Patiño-Douce AE, Corretgé LG, de la Rosa JD, El-Biad M, El-Hmidi H (1999) Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis. Contrib Mineral Petrol 135:255–276Google Scholar
  35. Cathelineau M (1981) Les Gisements Uraniferes de la Presqu’ile Guerandaise (Sud Bretagne); Approche Structurale et Metallogenique. Miner Deposita 16:227–240Google Scholar
  36. Cathelineau M (1982) Les gisements d’uranium liés spatialement aux leucogranites sud armoricains et à leur encaissant métamorphique: relations et interactions entre les minéralisations et divers contextes géologiques et structuraux. Sciences de la Terre Mémoires 42. Université de NancyGoogle Scholar
  37. Cathelineau M, Boiron MC, Holliger P, Poty B (1990) Metallogenesis of the French part of the Variscan orogen. Part II: Time-space relationships between U, Au and Sn-W ore deposition and geodynamic events—mineralogical and U-Pb data. Tectonophysics 177:59–79Google Scholar
  38. Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026Google Scholar
  39. Cháb J, Stráník Z, Eliáš M (2007) Geologická mapa České republiky 1: 500 000. Česká geologická služba, Praha, Czech RepublicGoogle Scholar
  40. Chantraine J, Autran J, Cavelier C (2003) Carte géologique de la France 1: 1 000 000, 6ème édition révisée. BRGMGoogle Scholar
  41. Chelle-Michou C, Laurent O, Moyen JF, Block S, Paquette JL, Couzinié S, Gardien V, Vanderhaeghe O, Villaros A, Zeh A (2017) Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: formation of the West European crust in a nutshell. Gondwana Res 46:170–190Google Scholar
  42. Civis Llovera J (2015) Mapas geológicos de España y Portugal 1:1,000,000. Instituto Geológico y Minero de España, IGMEGoogle Scholar
  43. Clifford TN, Barton ES, Stern RA, Duchesne JC (2004) U–Pb Zircon Calendar for Namaquan (Grenville) Crustal Events in the Granulite-facies Terrane of the O’okiep Copper District of South Africa. J Petrol 45:669–691Google Scholar
  44. Cuney M (2010) Evolution of uranium fractionation processes through time: driving the secular variation of uranium deposit types. Econ Geol 105:553–569Google Scholar
  45. Cuney M (2014) Felsic magmatism and uranium deposits. B Soc Geol Fr 185:75–92Google Scholar
  46. Cuney M, Barbey P (2014) Uranium, rare metals, and granulite-facies metamorphism. Geosci Front 5:729–745Google Scholar
  47. Cuney M, Kyser TK (2008) Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada, Short Course Series 39Google Scholar
  48. Cuney M, Friedrich M, Blumenfeld P, Bourguignon A, Boiron MC, Vigneresse JL, Poty B (1990) Metallogenesis in the French part of the Variscan orogen. Part I: U preconcentrations in pre-Variscan and Variscan formations—a comparison with Sn, W and Au. Tectonophysics 177:39–57Google Scholar
  49. Dabard MP (1997) Les Formations à cherts carbonés (phtanites) de la chaîne cadomienne; genèse et signification géodynamique; exemple du segment Armoricain. Documents du BRGM 267Google Scholar
  50. Dabard MP, Peucat JJ (2001) Les métasédiments de Bretagne sud. Rapport BRGMGoogle Scholar
  51. Dabard MP, Loi A, Peucat JJ (1996) Zircon typology combined with Sm-Nd whole-rock isotope analysis to study Brioverian sediments from the Armorican Massif. Sediment Geol 101:243–260Google Scholar
  52. Ducassou C, Poujol M, Ruffet G, Bruguier O, Ballèvre M (2014) Relief variation and erosion of the Variscan belt: detrital geochronology of the Palaeozoic sediments from the Mauges Unit (Armorican Massif, France). Geol Soc Lond Spec Publ 405:137–167Google Scholar
  53. Duchesne JC, Auwera JV, Liégeois JP, Barton ES, Clifford TN (2007) Geochemical constraints of the petrogenesis of the O’okiep Koperberg Suite and granitic plutons in Namaqualand, South Africa: A crustal source in Namaquan (Grenville) times. Precambrian Res 153:116–142Google Scholar
  54. Eglinger A, Vanderhaeghe O, André-Mayer AS, Goncalves P, Zeh A, Durand C, Deloule E (2016) Tectono-metamorphic evolution of the internal zone of the Pan-African Lufilian orogenic belt (Zambia): Implications for crustal reworking and syn-orogenic uranium mineralizations. Lithos 240–243:167–188Google Scholar
  55. Euzen T (1993) Pétrogenèse des granites de collision post-épaississement. Le cas des granites crustaux et mantelliques du complexe de Pontivy-Rostrenen (Massif Armoricain, France). Mémoires Géosciences Rennes 51Google Scholar
  56. Fusán O, Kodym O, Matějka A et al (1967) Geological map of Czechoslovakia 1:500,000. Czech Geological Survey, PrahaGoogle Scholar
  57. Gao P, Zheng Y, Zhao Z (2016) Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis. Lithos 266:133–157Google Scholar
  58. Gapais D, Brun JP, Gumiaux C, Cagnard F, Ruffet G, Le C De Veslud C (2015) Extensional tectonics in the Hercynian Armorican belt (France). An overview. B Soc Geol Fr 186:117–129Google Scholar
  59. García-Arias M, Corretgé LG, Fernández C, Castro A (2015) Water-present melting in the middle crust: The case of the Ollo de Sapo gneiss in the Iberian Massif (Spain). Chem Geol 419:176–191Google Scholar
  60. Gauthier-Lafaye F, Weber F (2003) Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere. Precambrian Res 120:81–100Google Scholar
  61. Geisler T, Vinx R, Martin-Gombojav N, Pidgeon RT (2005) Ion microprobe (SHRIMP) dating of detrital zircon grains from the quartzites of the Eckergneiss Complex, Harz Mountains (Germany): implications for the provenance and the geological history. Int J Earth Sci 94:369–384Google Scholar
  62. Georget Y (1986) Nature et origine des granites peralumineux à cordiérite et des roches associées. Exemples des granitoides du Massif Armoricain (France): Pétrologie et géochimie. Mémoires Géosciences Rennes 9Google Scholar
  63. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61Google Scholar
  64. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration—new insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261:230–243Google Scholar
  65. Gumiaux C, Gapais D, Brun JP, Chantraine J, Ruffet G (2004a) Tectonic history of the Hercynian Armorican Shear belt (Brittany, France). Geodin Acta 17:289–307Google Scholar
  66. Gumiaux C, Judenherc S, Brun JP, Gapais D, Granet M, Poupinet G (2004b) Restoration of lithosphere-scale wrenching from integrated structural and tomographic data (Hercynian belt of western France). Geology 32:333–336Google Scholar
  67. Höhn S, Koglin N, Klopf L, Schüssler U, Tragelehn H, Frimmel HE, Zeh A, Brätz H (2017) Geochronology, stratigraphy and geochemistry of Cambro-Ordovician, Silurian and Devonian volcanic rocks of the Saxothuringian Zone in NE Bavaria (Germany)—new constraints for Gondwana break up and ocean–island magmatism. Int J Earth Sci 1–19Google Scholar
  68. Jolivet J, Bienfait G, Vigneresse JL, Cuney M (1989) Heat flow and heat production in Brittany (Western France). Tectonophysics 159:61–72Google Scholar
  69. Jones KA, Brown M (1990) High-temperature “clockwise” P-T paths and melting in the development of regional migmatites: an example from southern Brittany, France. J Metamorph Geol 8:551–578Google Scholar
  70. Koglin N, Zeh A, Franz G, Schüssler U, Glodny J, Gerdes A, Brätz H (2018) From Cadomian magmatic arc to Rheic ocean closure: the geochronological-geochemical record of nappe protoliths of the Münchberg Massif, NE Bavaria (Germany). Gondwana Res 55:135–152Google Scholar
  71. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  72. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329Google Scholar
  73. Laurent O, Couzinié S, Zeh A, Vanderhaeghe O, Moyen JF, Villaros A, Gardien V, Chelle-Michou C (2017) Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U–Pb dating in the eastern French Massif Central. Int J Earth Sci 1–31Google Scholar
  74. Le Hébel F (2002) Déformation continentale et histoire des fluides au cours d’un cycle subduction, exhumation, extension. Exemple des porphyroïdes Sud-Armoricains. Dissertation, Université de Rennes 1Google Scholar
  75. Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN, Vidal P (1987) Deep seated processes in collision zones crustal generation of the Himalayan leucogranites. Tectonophysics 134:39–57Google Scholar
  76. Le Gall B, Authemayou C, Ehrhold A, Paquette JL, Bussien D, Chazot G, Aouizerat A, Pastol Y (2014) LiDAR offshore structural mapping and U/Pb zircon/monazite dating of Variscan strain in the Leon metamorphic domain, NW Brittany. Tectonophysics 630:236–250Google Scholar
  77. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43Google Scholar
  78. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precam Res 244:236–278Google Scholar
  79. López-Moro FJ, López-Plaza M, Gutiérrez-Alonso G, Fernández-Suárez J, López-Carmona A, Hofmann M, Romer RL (2017) Crustal melting and recycling: geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A U–Pb LA-ICP-MS study. Int J Earth Sci. CrossRefGoogle Scholar
  80. Marcoux E (1982) Etude géologique et métallogénique du district plombo-zincifère de Pontivy (Massif armoricain, France): Relations avec les paragenèses stannifères et uranifères. Bull BRGM (2), section II, n°1: pp 1–24Google Scholar
  81. Marcoux E, Cocherie A, Ruffet G, Darboux JR, Guerrot C (2009) Géochronologie revisitée du dôme du Léon (Massif armoricain, France). Géologie Fr 1:19–40Google Scholar
  82. Martínez Catalán JR, Rubio Pascual FJ, Díez Montes A, Díez Fernández RD, Gómez Barreiro J, Dias Da Silva Í, González Clavijo EG, Ayarza P, Alcock JE (2014) The late Variscan HT/LP metamorphic event in NW and Central Iberia: relationships to crustal thickening, extension, orocline development and crustal evolution. Geol Soc Lond Spec Publ 405:225–247Google Scholar
  83. Matteini M, Pavanetto P, Dabard MP, Hauser N, Loi A, Funedda A (2014) U–Pb ages and Hf isotopes on detrital zircons from Neoproterozoic sediments from the Armorican Massif (NW France): western Gondwana as possible source. 9th South American Symposium on Isotope Geology (SSAGI). 6–9 April 2014, Sao Paulo (Brazil)Google Scholar
  84. Michard A, Gurriet P, Soudant M, Albarede F (1985) Nd isotopes in French Phanerozoic shales: external vs. internal aspects of crustal evolution. Geochim Cosmochim Acta 49:601–610Google Scholar
  85. Montel JM (1993) Geochemistry of Accessory Minerals A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146Google Scholar
  86. Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contrib Mineral Petrol 128:176–196Google Scholar
  87. Nance DR, Murphy BJ (1994) Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: An example from the Neoproterozoic Avalonian-Cadomian belt. Geology 22:617–620Google Scholar
  88. Patiño-Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc Lond Spec Publ 168:55–75Google Scholar
  89. Patiño-Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107:202–218Google Scholar
  90. Peiffert C, Cuney M, Nguyen-Trung C (1994) Uranium in granitic magmas: Part 1. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-Na2CO3 system at 720–770 °C, 2 kbar. Geochim Cosmochim Acta 58:2495–2507Google Scholar
  91. Peiffert C, nguyen-Trung C, Cuney M (1996) Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-NaX (X = Cl, F) system at 770 °C, 2 kbar. Geochim Cosmochim Acta 60:1515–1529Google Scholar
  92. Pelhate A (1994) Carboniferous of the Armorican Massif. In: Chantraine J, Rolet J, Santallier DS, Piqué A, Keppie JD (eds) Pre-Mesozoic geology in France and related areas. Springer, Berlin, pp 162–168Google Scholar
  93. Peucat JJ, Auvray B, Hirbec Y, Calvez JY (1984) Granites et cisaillements hercyniens dans le Nord du Massif Armoricain; geochronologie Rb-Sr. Bull B Soc Geol Fr S7–XXVI:1365–1373Google Scholar
  94. Pochon A, Poujol M, Gloaguen E, Branquet Y, Cagnard F, Gumiaux C, Gapais D (2016) U-Pb LA-ICP-MS dating of apatite in mafic rocks: evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). Am Mineral 101:2430–2442Google Scholar
  95. Raith JG (1995) Petrogenesis of the Concordia Granite Gneiss and its relation to W-Mo mineralization in western Namaqualand, South Africa. Precambrian Res 70:303–335Google Scholar
  96. Robb LJ (1986) Uraniferous leucogranites from the Namaqualand Metamorphic Complex: Part I—geology, geochemistry and petrogenesis. Mineral Deposits Southern Africa 2:1609–1627Google Scholar
  97. Robb LJ, Armstrong RA, Waters DJ (1999) The History of Granulite-Facies Metamorphism and Crustal Growth from Single Zircon U–Pb Geochronology: Namaqualand, South Africa. J Petrol 40:1747–1770Google Scholar
  98. Romer RL, Kroner U (2015) Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization. Miner Deposita 50:327–338Google Scholar
  99. Romer RL, Kroner U (2016) Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res 31:60–95Google Scholar
  100. Romer RL, Thomas R, Stein HJ, Rhede D (2007) Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany. Miner Deposita 42:337–359Google Scholar
  101. Romer RL, Schneider J, Linnemann U (2010) Post-Variscan deformation and hydrothermal mineralization in Saxo-Thuringia and beyond: a geochronologic review. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia—From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 347–360Google Scholar
  102. Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise on geochemistry 3Google Scholar
  103. Samson SD, D’lemos RS (1998) U–Pb geochronology and Sm–Nd isotopic composition of Proterozoic gneisses, Channel Islands, UK. J Geol Soc 155:609–618Google Scholar
  104. Scherer E, Münker C, Mezger K (2001) Calibration of the Lutetium-Hafnium Clock. Science 293:683–687Google Scholar
  105. Shaw RA, Goodenough KM, Roberts NM, Horstwood MS, Chenery SR, Gunn AG (2016) Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian Gneiss Complex of north-west Scotland. Precambrian Res 281:338–62Google Scholar
  106. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324Google Scholar
  107. Tartèse R, Boulvais P (2010) Differentiation of peraluminous leucogranites “en route” to the surface. Lithos 114:353–368Google Scholar
  108. Tartèse R, Poujol M, Ruffet G, Boulvais P, Yamato P, Košler J (2011a) New U-Pb zircon and 40Ar/39Ar muscovite age constraints on the emplacement of the Lizio syn-tectonic granite (Armorican Massif, France). Comptes Rendus Geosci 343:443–453Google Scholar
  109. Tartèse R, Ruffet G, Poujol M, Boulvais P, Ireland TR (2011b) Simultaneous resetting of the muscovite K-Ar and monazite U-Pb geochronometers: a story of fluids. Terra Nova 23:390–398Google Scholar
  110. Tartèse R, Boulvais P, Poujol M, Chevalier T, Paquette JL, Ireland TR, Deloule E (2012) Mylonites of the South Armorican Shear Zone: insights for crustal-scale fluid flow and water–rock interaction processes. J Geodyn 56–57:86–107Google Scholar
  111. Tartèse R, Boulvais P, Poujol M, Gloaguen E, Cuney M (2013) Uranium Mobilization from the Variscan Questembert Syntectonic Granite During Fluid-Rock Interaction at Depth. Econ Geol 108:379–386Google Scholar
  112. Taylor SR, McLennan SM (1985) The continental crust: Its composition and evolutionGoogle Scholar
  113. Thiéblemont D, Cataing C, Billa M, Bouton P, Préat (2009) Notice explicative de la Carte géologique et des Ressources minérales de la République Gabonaise à 1: 1 000 000. Editions DGMG, Ministère des Mines, du Pétrole, des Hydrocarbures, LibrevilleGoogle Scholar
  114. Thomas RJ, De Beer CH, Bowring SA (1996) A comparative study of the Mesoproterozoic late orogenic porphyritic granitoids of southwest Namaqualand and Natal, South Africa. J Afr Earth Sci 23:485–508Google Scholar
  115. Tichomirowa M, Sergeev S, Berger HJ, Leonhardt D (2012) Inferring protoliths of high-grade metamorphic gneisses of the Erzgebirge using zirconology, geochemistry and comparison with lower-grade rocks from Lusatia (Saxothuringia, Germany). Contrib Mineral Petrol 164:375–396Google Scholar
  116. Tischendorf G, Förster HJ (1994) Hercynian granite magmatism and related metallogenesis in the Erzgebirge: A status report. Mineral deposits of the Erzgebirge/Krusne hory (Germany/Czech Republic). Monogr Ser Mineral Deposits 31:5–23Google Scholar
  117. Trautmann F, Carn A (1997) La Guerche-De-Bretagne 354., Carte géologique de France 1:50 000. BRGMGoogle Scholar
  118. Turpin L, Cuney M, Friedrich M, Bouchez JL, Aubertin M (1990) Meta-igneous origin of Hercynian peraluminous granites in N.W. French Massif Central: implications for crustal history reconstructions. Contrib Mineral Petrol 104:163–172Google Scholar
  119. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312:190–194Google Scholar
  120. Vernhet Y, Plaine J, Trautmann F, Pivette B (2009) Cossé-Le-Vivien 355., Carte géologique de France 1:50 000. BRGMGoogle Scholar
  121. Vidal P, Auvray B, Charlot R, Cogné J (1981) Precadomian relicts in the Armorican Massif: Their age and role in the evolution of the western and central European Cadomian-Hercynian belt. Precambrian Res 14:1–20Google Scholar
  122. Vidal M, Dabard MP, Gourvenec R, Le Hérissé A, Loi A, Paris F, Plusquellec Y, Racheboeuf PR (2011) Le Paléozoïque de la presqu’île de Crozon, Massif armoricain (France). Géologie de la France 1:3–45Google Scholar
  123. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276Google Scholar
  124. Vigneresse JL, Cuney M, Jolivet J, Bienfait G (1989) Selective heat-producing element enrichment in a crustal segment of the mid-European Variscan chain. Tectonophysics 159:47–60Google Scholar
  125. Villaseca C, Orejana D, Belousova EA (2012) Recycled metaigneous crustal sources for S- and I-type Variscan granitoids from the Spanish Central System batholith: Constraints from Hf isotope zircon composition. Lithos 153:84–93Google Scholar
  126. Villaseca C, Martínez EM, Orejana D, Andersen T, Belousova E (2016) Zircon Hf signatures from granitic orthogneisses of the Spanish central system: significance and sources of the Cambro-Ordovician magmatism in the Iberian Variscan Belt. Gondwana Res 34:60–83Google Scholar
  127. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304Google Scholar
  128. Wedepohl KH (2016) Chemical composition and fractionation of the continental crust. Geol Rundsch 80:207–223Google Scholar
  129. Zeh A, Gerdes A (2010) Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): Implications for the closure of the Rheic ocean. Gondwana Res 17:254–263Google Scholar
  130. Zeh A, Brätz H, Millar IL, Williams IS (2001) A combined zircon SHRIMP and Sm-Nd isotope study on high-grade paragneisses from the Mid-German Crystalline Rise: Evidence for northern Gondwanan and Grenvillian provenance. J Geol Soc London 158:983–994Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeologyUniversity of JohannesburgAuckland ParkSouth Africa
  2. 2.Univ Rennes, CNRS, Géosciences Rennes, UMR 6118RennesFrance
  3. 3.Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Campus South, Mineralogy and PetrologyKarlsruheGermany

Personalised recommendations