International Journal of Earth Sciences

, Volume 107, Issue 6, pp 2011–2022 | Cite as

Authigenic rhodochrosite from a gas hydrate-bearing structure in Lake Baikal

  • Alexey A. Krylov
  • Akihiro Hachikubo
  • Hirotsugu Minami
  • Tatyana V. Pogodaeva
  • Tamara I. Zemskaya
  • Mariya G. Krzhizhanovskaya
  • Jeffrey Poort
  • Oleg M. Khlystov
Original Paper


Early diagenetic carbonates are rare in Lake Baikal. Siderite (Fe carbonate) concretions in the sediments were discovered only recently. Here, we discuss the first finding of rhodochrosite concretions (Mn carbonate) discovered in the near-bottom sediments of the gas hydrate-bearing seepage structure St. Petersburg-2 in the deep water environment of the Central Baikal Basin. The crystal lattice of rhodochrosite contains iron and calcium substituting to manganese. Based on pore water geochemistry and of δ13C values of rhodochrosite (− 23.3 and − 29.4‰), carbon dioxide (+ 3.8 to − 16.1‰) and methane (− 63.2 to − 67.8‰), we show that carbonate crystallization most likely occurred during microbial anaerobic oxidation of organic matter, and that part of the oxygen making up the rhodochrosite seems to be derived from the 18O-rich water released from dissociating gas hydrates.


Lake Baikal Authigenic carbonates Rhodochrosite Methane Gas hydrates 



XRD and microprobe analyzes carried out in resource centers at St. Petersburg State University: “Centre for X-ray Diffraction Studies” and “Center for Microscopy and Microanalysis”. Research supported by the RFBR grant 16-05-00979 (to A.K., O.K.), Event-6 of St. Petersburg State University (3.42.1039.2016) (to AK), JSPS KAKENHI Grant Numbers JP26303021 (to A.H.) and JP16H05760 (to H.M.), as well as the Kitami Institute of Technology (Presidential Grant). The field work and analysis of pore water chemistry performed under the Project of 0345-2014-0009 and 0345-2016-0007. The paper is also associated to the French–Russian bilateral project “Shy@Baikal” (CNRS-PRC Nr. 1072 and RFFI Nr.16-55-0005). Authors are grateful to Rustam Atanyazov, Leisan Muzafarova and Dr. Svetlana Janson for research assistance. Constructive reviews of G. Aloisi and an anonymous reviewer helped to significantly improve the content of the article.


  1. Aloisi G, Pierre C, Rouchy J-M, Foucher J-P, Woodside J and the MEDINAUT Scientific Party (2000) Methane-related authigenic carbonates of eastern MediterraneanSea mud volcanoes and their possible relation to gas hydrate destabilization. Earth Planet Sci Lett 184:321–338CrossRefGoogle Scholar
  2. Becker RH, Clayton RN (1976) Oxygen isotope study of a Precambrian banded iron-formation, Hamersley Range, Western Australia. Geochim Cosmochim Acta 40:1153–1165CrossRefGoogle Scholar
  3. Borowski WS, Paull CK, Ussler IIIW. (1997) Carbon cycling within the upper methanogenic zone of continental rise sediments: an example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits. Mar Chem 57:299–311CrossRefGoogle Scholar
  4. De Batist M, Klerkx J, Van Rensbergen P, Vanneste M, Poort J, Golmshtok AY, Kremlev AA, Khlystov OM, Krinitsky P (2002) Active hydrate destabilization in Lake Baikal, Siberia? Terra Nova 14:436–442CrossRefGoogle Scholar
  5. Derkachev AN, Bohrmann G, Greinert J, Mozherovskii AV (2000) Authigenic Carbonate and Barite Mineralization in Sediments of the Deryugin Basin (Sea of Okhotsk). Lithol Min Resour 35:504–508CrossRefGoogle Scholar
  6. Drilling Project Group (2000) Paleoclimatic record in the late Cenozoic sediments of Lake Baikal (by 600 m deep-drilling data). Russ Geol Geophys 41:3–32Google Scholar
  7. Egorov AV, Rimskii-Korsakov NA, Rozhkov AN, Chernyaev ES (2011) The first experience the transportation of deep-water methane hydrates in a container. Oceanology 51:359–365CrossRefGoogle Scholar
  8. Falkner KK, Measures CI, Herbelin SE, Edmond JM (1991) The major and minor element geochemistry of Lake Baikal. Limnol Oceanogr 36:413–423CrossRefGoogle Scholar
  9. Gainutdinova EA, Dagurova OP, Namsaraev BB, Eshinimaev BTS, Suzina NE, Khmelenina VN, Trotsenko YuA, Tsyrenzhapova IS (2005) Aerobic methanotrophic communities in the bottom sediments of Lake Baikal. Microbiology 74:486–494CrossRefGoogle Scholar
  10. Golyshev SI, Padalko NL, Pechenkin SA (1981) Fractionation of stable oxygen and carbon isotopes in carbonate systems. Geochem Int 18:85–99Google Scholar
  11. Granin NG, Makarov MM, Kucher KM, Gnatovsky RY (2010) Gas seeps in Lake Baikal – detection, distribution, and implication for water column mixing. Geo Mar Lett 30:399–409CrossRefGoogle Scholar
  12. Granina LZ, Callender LZ, Lomonosov IS, Mats VD, Golobokova LP (2001) Anomalies in the composition of Baikal pore water. Russ Geol Geophys 42:362–372Google Scholar
  13. Granina L, Muller B, Wehrli B (2004) Origin and dynamics of Fe and Mn sedimentary layers in Lake Baikal. Chem Geol 205:55–72CrossRefGoogle Scholar
  14. Granina LZ, Klerkx J, Callender E, Leermakers M, Golobokova LP (2007) Bottom sediments and pore waters near a hydrothermal vent in Lake Baikal (Frolikha Bay). Russ Geol Geophys 48:237–246CrossRefGoogle Scholar
  15. Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane-venting at hydrate ridge: classification, distribution, and origin of authigenic lthologies. In: Paull CK, Dillon PW (eds) Natural gas hydrates: occurrence, distribution, and detection. Geophysical Monograph, vol 124. American Geophysical Union, Washington, DC, pp 99–113Google Scholar
  16. Hachikubo A, Krylov A, Sakagami H, Minami H, Nunokawa Y, Shoji H, Matveeva T, Jin YK, Obzhirov A (2010) Isotopic composition of gas hydrates in subsurface sediments from offshore Sakhalin Island, Sea of Okhotsk. Geo Mar Lett 30:313–319CrossRefGoogle Scholar
  17. Jorgensen BB (2006) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine geochemistry, 2nd edn. Springer, Berlin, Heidelberg, pp 169–206Google Scholar
  18. Judd A, Croker P, Tizzard L, Voisey C (2007) Extensive methane-derived authigenic carbonates in the Irish Sea. Geo Mar Lett 27:259–267CrossRefGoogle Scholar
  19. Kadnikov VV, Mardanov A, Beletsky AV, Shubenkova OV, Pogodaeva TV, Zemskaya TI, Ravin NV, Skryabin KG (2012) Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal. FEMS Microbiol Ecol 79:348–358CrossRefGoogle Scholar
  20. Kalmychkov GV, Egorov AV, Kuzmin MI, Khlystov OM (2006) Genetic types of methane from Lake Baikal. Dokl Earth Sci 411A:1462–1465CrossRefGoogle Scholar
  21. Khlystov OM (2006) New findings of gas hydrates in the Baikal bottom sediments. Russ Geol Geophys 47:972–974Google Scholar
  22. Khlystov O, De Batist M, Shoji H, Hachikubo A, Nishio S, Naudts L, Poort J, Khabuev A, Belousov O, Manakov A, Kalmychkov G (2013) Gas hydrate of Lake Baikal: discovery and varieties. J Asian Earth Sci 62:162–166CrossRefGoogle Scholar
  23. Kim S-T, Kang JO, Yun S-T, O’Neil JR, Mucci A (2009) Experimental studies of oxygen fractionation between rhodochrosite (MnCO3) and water at low temperatures. Geochim Cosmochim Acta 73:4400–4408CrossRefGoogle Scholar
  24. Klerkx J, Zemskaya TI, Matveeva TV, Khlystov OM, Namsaraev BB, Dagurova OP, Golobokova LP, Vorobeva SS, Pogodaeva TP, Granin NG, Kalmychkov GV, Ponomarchuk VA, Shoji H, Mazurenko LL, Kaulio VV, Solov’ev VA, Grachev MA (2003) Methane hydrates in deep bottom sediments of Lake Baikal. Dokl Earth Sci 393A:1342–1346Google Scholar
  25. Knyazeva LM (1964) Vivianite in bottom muds of Lake Baikal (in Russian). Dokl Akad Nauk USSR 97:519–522Google Scholar
  26. Krylov A, Khlystov O, Zemskaya T, Minami H, Hachikubo A, Kida M, Shoji H, Naudts L, Poort J, Pogodaeva TV (2008a) First discovery and formation process of authigenic siderite from gas hydrate-bearing mud volcanoes in fresh water: Lake Baikal, Eastern Siberia. Geophys Res Lett 35:L05405. CrossRefGoogle Scholar
  27. Krylov A, Khlystov O, Zemskaya T, Minami H, Hachikubo A, Kida M, Shoji H, Pogodaeva TP, Naudts L, Poort J (2008b) Crystallization of Authigenic Carbonates in Mud Volcanoes at Lake Baikal. Geochem Internat 10:985–995CrossRefGoogle Scholar
  28. Krylov AA, Khlystov OM, Hachikubo A, Minami H, Nunokawa Yu, Shoji H, Zemskaya TI, Naudts L, Pogodaeva TV, Kida M, Kalmychkov GV, Poort J (2010) Isotopic composition of dissolved inorganic carbon in the subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: Implications for methane and carbonate origin. Geo-Mar Lett 30:427–437. CrossRefGoogle Scholar
  29. Kuleshov VN (2001) Evolution of isotopic carbon dioxide–water system in lithogenesis: communication 1. Sedimentogenesis and diagenesis. Lithol Min Resour 36:429–444CrossRefGoogle Scholar
  30. Kuleshov VN (2011) Manganese deposits: communication 1. Genetic models of manganese ore formation. Lithol Min Resour 46:473–493CrossRefGoogle Scholar
  31. Lein AY (2004) Authigenic carbonate formation in the ocean. Lithol Min Resour 39:1–30CrossRefGoogle Scholar
  32. Lein AY, Ivanov MB (2009) Biogeochemical cycle of methane in the Ocean (in Russian). Nauka, MoscowGoogle Scholar
  33. Lomakina AV, Mamaeva EV, Galachyants YP, Petrova DP, Pogodaeva TV, Shubenkova OV, Khabuev AV, Morozov IV, Zemskaya TI (2017) Diversity of Archaea in bottom sediments of the discharge areas with oil- and gas-bearing fluids in Lake Baikal. Geomicrobiol J.
  34. Maekawa T (2004) Experimental study on isotopic fractionation in water during gas hydrate formation. Geochem J 38:129–138CrossRefGoogle Scholar
  35. Maerki M, Muller B, Wehrli B (2006) Microscale mineralization pathways in surface sediments: a chemical sensor study in Lake Baikal. Limnol Oceanogr 51:1342–1354CrossRefGoogle Scholar
  36. Matveeva TV, Mazurenko LL, Soloviev VA, Klerkx J, Kaulio VV, Prasolov EM (2003) Gas hydrate accumulation in the subsurface sediments of Lake Baikal (Eastern Siberia). Geo-Mar Lett 23:289–299CrossRefGoogle Scholar
  37. Mazzini A, Ivanov MK, Parnell J, Stadnitskaia A, Cronin BT, Poludetkina E, Mazurenko L, van Weering TCE (2004) Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids. Mar Geol 212:153–181CrossRefGoogle Scholar
  38. Meister P, Bernasconi SM, Aiello IW, Vasconcelos C, Mckensie JA (2009) Depth and controls of Ca-rhodochrosite precipitation in bioturbated sediments of the Eastern Equatorial Pacific, ODP Leg 201, Site 1226 and DSDP Leg 68, Site 503. Sedimentology 56:1552–1568CrossRefGoogle Scholar
  39. Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107:308–341CrossRefGoogle Scholar
  40. Minami H, Hachikubo A, Sakagami H, Yamashita S, Soramoto Y, Kotake T, Takahashi N, Shoji H, Pogodaeva T, Khlystov O, Khabuev A, Naudts L, De Batist M (2014) Sequentially sampled gas hydrate water, coupled with pore water and bottom water isotopic and ionic signatures at the Kukuy mud volcano, Lake Baikal: ambiguous deep-rooted source of hydrate-forming water. Geo Mar Lett 34:241–251Google Scholar
  41. Minami H, Shoji H, Khlystov O, De Batist M, Takahashi N, Grachev M (2015) Operation Report of Multy-phase Gas Hydrate Project II 2014 (MHP II-14), R/V G.U. Vereschagin Cruise, VER-14-03, Environmental and Energy Resources Research Center. Kitami Institute of Technology, KitamiGoogle Scholar
  42. Mizandrontsev IB (1975) About geochemistry of the pore solutions (in Russian). In: Galazii GI, and Parmuzin YP (eds) Dynamic of the Baikal depression. Nauka, Novosibirsk, pp 203–231Google Scholar
  43. Namsaraev BB, Zemskaya TI (2000) Microbial processes of Carbon circulation in bottom sediments of Lake Baikal. Siberian Branch of RAS, Novosibirsk, p 160Google Scholar
  44. Och LM, Muller B, Voegelin A, Ulrich A, Gottlicher J, Steiniger R, Mangold S, Vologina EG, Sturm M (2012) New insight into the formation and burial of Fe/Mn accumulations in Lake Baikal sediments. ChemGeol 330–331:244–259Google Scholar
  45. Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43.
  46. Pavlova ON, Bukin SV, Lomakina AV, Kalmychkov GV, Ivanov VG, Morozov IV, Pogodaeva TV, Pimenov NV, Zemskaya TI (2014) Production of gaseous hydrocarbons by microbial communities of Lake Baikal bottom sediments. Microbiology 83:798–804CrossRefGoogle Scholar
  47. Pierre C, Rouchy J-M, Blanc-Valleron M-M, Etoubleau J, Fouquet Y (2015) Methanogenesis and clay minerals diagenesis during the formation of dolomite nodules from the Tortonian marls of southern Spain. Mar Pet Geol 66:606–615CrossRefGoogle Scholar
  48. Pogodaeva TV, Zemskaya TI, Golobokova LP, Khlystov OM, Minami H, Sakagami H (2007) Chemical composition of pore waters of bottom sediments in different Baikal basins. Russ Geol Geophys 48:886–900CrossRefGoogle Scholar
  49. Prokopenko AA, Williams DF (2004) Deglacial mehane emission signals in the carbon isotopic record of Lake Baikal. Earth Planet Sci Lett 218:135–147CrossRefGoogle Scholar
  50. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513CrossRefGoogle Scholar
  51. Ridgwell A, Zeebe RE (2005) The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet Sci Lett 234:299–315CrossRefGoogle Scholar
  52. Sakagami H, Takahashi N, Hachikubo A (2012) Molecular and isotopic composition of hydrate-bound and dissolved gases in the southern basin of Lake Baikal, based on an improved headspace gas method. Geo Mar Lett 32:465–472CrossRefGoogle Scholar
  53. Sapota T, Aldahan A, Al-Aasm IS (2006) Sedimentary facies and climate control on formation of vivianite and siderite microconcretions in sediments of Lake Baikal, Siberia. J Paleolimnol 36:245–257CrossRefGoogle Scholar
  54. Swart PK (2015) The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology 62:1233–1304CrossRefGoogle Scholar
  55. Torres NT, Och LM, Hauser PC, Furrer G, Brandl H, Vologina E, Sturm M, Burgmann H, Muller B (2014) Early diagenetic processes generated iron and manganese oxide layer in the sediments of Lake Baikal, Siberia. Environ Sci Proc Impacts 16:879–889CrossRefGoogle Scholar
  56. van Rensbergen P, De Batist M, Klerkx J, Hus R, Poort J, Vanneste M, Granin N, Khlystov O, Krinitsky P (2002) Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal. Geology 30(7):631–634CrossRefGoogle Scholar
  57. Whiticar MJ (1999) Carbon and hydrogen isotope systematic of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  58. Zemskaya TI, Pogodaeva TV, Shubenkova OV, Chernitsina SM, Dagurova OP, Buryukhaev SP, Namsaraev BB, Khlystov O, Egorov AV, Krylov AA, Kalmychkov GV (2010) Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3. Geo Mar Lett 30:411–425CrossRefGoogle Scholar
  59. Zemskaya TI, Sitnikova TY, Kiyashko SI, Kalmychkov GV, Pogodaeva TV, Mekhanikova IV, Naumova TV, Shubenkova OV, Chernitsina SM, Kotsar OV, Chernyaev ES, Khlystov OM (2012) Faunal communities at sites of gas- and oil-bearing fluids in Lake Baikal. Geo Mar Lett 32:437–451CrossRefGoogle Scholar
  60. Zemskaya TI, Lomakina AV, Shubenkova OV, Pogodaeva TV, Morozov IV, Chernitsina SM, Sitnikova TY, Khlystov O, Egorov AV (2015) Jelly-like Microbial Mats over Subsurface Fields of Gas Hydrates at the St. Petersburg Methane Seep (Central Baikal). Geomicrobiol J 32:89–100CrossRefGoogle Scholar
  61. Zheng Y-F, Böttcher ME (2016) Oxygen isotope fractionation in double carbonates. Isot Environ Health Stud 52:29–46CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexey A. Krylov
    • 1
    • 2
    • 3
  • Akihiro Hachikubo
    • 4
  • Hirotsugu Minami
    • 4
  • Tatyana V. Pogodaeva
    • 3
  • Tamara I. Zemskaya
    • 3
  • Mariya G. Krzhizhanovskaya
    • 2
  • Jeffrey Poort
    • 5
  • Oleg M. Khlystov
    • 3
  1. 1.FGBU “Academician I.S. Gramberg All-Russia Research Institute for Geology and Mineral Resources of the World Ocean” (VNIIOkeangeologia)St. PetersburgRussia
  2. 2.Institute of Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Limnological Institute, Siberian Branch of the Russian Academy of SciencesIrkutskRussia
  4. 4.Kitami Institute of TechnologyKitamiJapan
  5. 5.Institut des Sciences de la Terre de Paris (ISTeP)Sorbonne Université, UMR 7193 CNRS-UPMCParisFrance

Personalised recommendations